1
0
mirror of https://github.com/RIOT-OS/RIOT.git synced 2024-12-29 04:50:03 +01:00
RIOT/sys/shell/commands/sc_gnrc_netif.c
Benjamin Valentin c31e373214 shell_commands: gnrc_netif: only include LoRA options when LoRA PHY is present
If no LoRA module is used, there is no use in compiling in all the config options
for LoRA PHYs.

This saves about 1k of .text
2019-09-24 17:14:03 +02:00

1384 lines
40 KiB
C

/*
* Copyright (C) 2017 Freie Universität Berlin
*
* This file is subject to the terms and conditions of the GNU Lesser
* General Public License v2.1. See the file LICENSE in the top level
* directory for more details.
*/
/**
* @ingroup sys_shell_commands
* @{
*
* @file
* @brief Shell commands for interacting with network interfaces
*
* @author Martine Lenders <m.lenders@fu-berlin.de>
* @author Hauke Petersen <hauke.petersen@fu-berlin.de>
* @author Oliver Hahm <oliver.hahm@inria.fr>
*/
#include <stdio.h>
#include <string.h>
#include "net/ipv6/addr.h"
#include "net/gnrc.h"
#include "net/gnrc/netif.h"
#include "net/gnrc/netif/hdr.h"
#include "net/lora.h"
#ifdef MODULE_NETSTATS
#include "net/netstats.h"
#endif
#ifdef MODULE_L2FILTER
#include "net/l2filter.h"
#endif
/**
* @brief The default IPv6 prefix length if not specified.
*/
#define _IPV6_DEFAULT_PREFIX_LEN (64U)
/**
* @brief Threshold for listed option flags
*/
#define _LINE_THRESHOLD (8U)
/**
* @brief Flag command mapping
*
* @note Add options that are changed with netopt_enable_t here
*/
static const struct {
char *name;
netopt_t opt;
} flag_cmds[] = {
{ "ack_req", NETOPT_ACK_REQ },
{ "autoack", NETOPT_AUTOACK },
{ "autocca", NETOPT_AUTOCCA },
{ "csma", NETOPT_CSMA },
{ "encrypt", NETOPT_ENCRYPTION },
{ "mac_no_sleep", NETOPT_MAC_NO_SLEEP },
{ "fwd", NETOPT_IPV6_FORWARDING },
{ "iphc", NETOPT_6LO_IPHC },
{ "preload", NETOPT_PRELOADING },
{ "promisc", NETOPT_PROMISCUOUSMODE },
{ "phy_busy", NETOPT_PHY_BUSY },
{ "raw", NETOPT_RAWMODE },
{ "rtr_adv", NETOPT_IPV6_SND_RTR_ADV },
{ "iq_invert", NETOPT_IQ_INVERT },
{ "rx_single", NETOPT_SINGLE_RECEIVE },
{ "chan_hop", NETOPT_CHANNEL_HOP },
{ "checksum", NETOPT_CHECKSUM },
};
/* utility functions */
static bool _is_number(char *str)
{
for (; *str; str++) {
if (*str < '0' || *str > '9') {
return false;
}
}
return true;
}
static inline bool _is_iface(kernel_pid_t iface)
{
return (gnrc_netif_get_by_pid(iface) != NULL);
}
#ifdef MODULE_NETSTATS
static const char *_netstats_module_to_str(uint8_t module)
{
switch (module) {
case NETSTATS_LAYER2:
return "Layer 2";
case NETSTATS_IPV6:
return "IPv6";
case NETSTATS_ALL:
return "all";
default:
return "Unknown";
}
}
static int _netif_stats(kernel_pid_t iface, unsigned module, bool reset)
{
netstats_t *stats;
int res = gnrc_netapi_get(iface, NETOPT_STATS, module, &stats,
sizeof(&stats));
if (res < 0) {
puts(" Protocol or device doesn't provide statistics.");
}
else if (reset) {
memset(stats, 0, sizeof(netstats_t));
printf("Reset statistics for module %s!\n", _netstats_module_to_str(module));
}
else {
printf(" Statistics for %s\n"
" RX packets %u bytes %u\n"
" TX packets %u (Multicast: %u) bytes %u\n"
" TX succeeded %u errors %u\n",
_netstats_module_to_str(module),
(unsigned) stats->rx_count,
(unsigned) stats->rx_bytes,
(unsigned) (stats->tx_unicast_count + stats->tx_mcast_count),
(unsigned) stats->tx_mcast_count,
(unsigned) stats->tx_bytes,
(unsigned) stats->tx_success,
(unsigned) stats->tx_failed);
res = 0;
}
return res;
}
#endif /* MODULE_NETSTATS */
static void _set_usage(char *cmd_name)
{
printf("usage: %s <if_id> set <key> <value>\n", cmd_name);
puts(" Sets an hardware specific specific value\n"
" <key> may be one of the following\n"
" * \"addr\" - sets (short) address\n"
" * \"addr_long\" - sets long address\n"
" * \"addr_short\" - alias for \"addr\"\n"
" * \"cca_threshold\" - set ED threshold during CCA in dBm\n"
" * \"freq\" - sets the \"channel\" center frequency\n"
" * \"channel\" - sets the frequency channel\n"
" * \"chan\" - alias for \"channel\"\n"
" * \"checksum\" - set checksumming on-off\n"
" * \"csma_retries\" - set max. number of channel access attempts\n"
" * \"encrypt\" - set the encryption on-off\n"
" * \"hop_limit\" - set hop limit\n"
" * \"hl\" - alias for \"hop_limit\"\n"
" * \"key\" - set the encryption key in hexadecimal format\n"
" * \"mtu\" - IPv6 maximum transition unit\n"
" * \"nid\" - sets the network identifier (or the PAN ID)\n"
" * \"page\" - set the channel page (IEEE 802.15.4)\n"
" * \"pan\" - alias for \"nid\"\n"
" * \"pan_id\" - alias for \"nid\"\n"
" * \"phy_busy\" - set busy mode on-off\n"
#ifdef MODULE_GNRC_NETIF_CMD_LORA
" * \"bw\" - alias for channel bandwidth\n"
" * \"sf\" - alias for spreading factor\n"
" * \"cr\" - alias for coding rate\n"
#endif
" * \"power\" - TX power in dBm\n"
" * \"retrans\" - max. number of retransmissions\n"
" * \"src_len\" - sets the source address length in byte\n"
" * \"state\" - set the device state\n");
}
static void _flag_usage(char *cmd_name)
{
printf("usage: %s <if_id> [-]{", cmd_name);
for (unsigned i = 0; i < ARRAY_SIZE(flag_cmds); i++) {
printf("%s", flag_cmds[i].name);
if (i < (ARRAY_SIZE(flag_cmds) - 1)) {
printf("|");
}
}
puts("}");
}
static void _add_usage(char *cmd_name)
{
printf("usage: %s <if_id> add [anycast|multicast|unicast] "
"<ipv6_addr>[/prefix_len]\n", cmd_name);
}
static void _del_usage(char *cmd_name)
{
printf("usage: %s <if_id> del <ipv6_addr>\n",
cmd_name);
}
#ifdef MODULE_NETSTATS
static void _stats_usage(char *cmd_name)
{
printf("usage: %s <if_id> stats [l2|ipv6] [reset]\n", cmd_name);
puts(" reset can be only used if the module is specified.");
}
#endif
static void _print_netopt(netopt_t opt)
{
switch (opt) {
case NETOPT_ADDRESS:
printf("(short) address");
break;
case NETOPT_ADDRESS_LONG:
printf("long address");
break;
case NETOPT_SRC_LEN:
printf("source address length");
break;
case NETOPT_CHANNEL:
printf("channel");
break;
case NETOPT_CHANNEL_FREQUENCY:
printf("frequency [in Hz]");
break;
case NETOPT_CHANNEL_PAGE:
printf("page");
break;
case NETOPT_HOP_LIMIT:
printf("hop limit");
break;
case NETOPT_MAX_PDU_SIZE:
printf("MTU");
break;
case NETOPT_NID:
printf("network identifier");
break;
case NETOPT_TX_POWER:
printf("TX power [in dBm]");
break;
case NETOPT_RETRANS:
printf("max. retransmissions");
break;
case NETOPT_CSMA_RETRIES:
printf("CSMA retries");
break;
case NETOPT_CCA_THRESHOLD:
printf("CCA threshold [in dBm]");
break;
case NETOPT_ENCRYPTION:
printf("encryption");
break;
case NETOPT_ENCRYPTION_KEY:
printf("encryption key");
break;
#ifdef MODULE_GNRC_NETIF_CMD_LORA
case NETOPT_BANDWIDTH:
printf("bandwidth");
break;
case NETOPT_SPREADING_FACTOR:
printf("spreading factor");
break;
case NETOPT_CODING_RATE:
printf("coding rate");
break;
#endif
case NETOPT_CHECKSUM:
printf("checksum");
break;
case NETOPT_PHY_BUSY:
printf("PHY busy");
break;
default:
/* we don't serve these options here */
break;
}
}
static const char *_netopt_state_str[] = {
[NETOPT_STATE_OFF] = "OFF",
[NETOPT_STATE_SLEEP] = "SLEEP",
[NETOPT_STATE_IDLE] = "IDLE",
[NETOPT_STATE_RX] = "RX",
[NETOPT_STATE_TX] = "TX",
[NETOPT_STATE_RESET] = "RESET",
[NETOPT_STATE_STANDBY] = "STANDBY"
};
#ifdef MODULE_GNRC_NETIF_CMD_LORA
static const char *_netopt_bandwidth_str[] = {
[LORA_BW_125_KHZ] = "125",
[LORA_BW_250_KHZ] = "250",
[LORA_BW_500_KHZ] = "500"
};
static const char *_netopt_coding_rate_str[] = {
[LORA_CR_4_5] = "4/5",
[LORA_CR_4_6] = "4/6",
[LORA_CR_4_7] = "4/7",
[LORA_CR_4_8] = "4/8"
};
#endif
/* for some lines threshold might just be 0, so we can't use _LINE_THRESHOLD
* here */
static unsigned _newline(unsigned threshold, unsigned line_thresh)
{
if (line_thresh > threshold) {
printf("\n ");
line_thresh = 0U;
}
return line_thresh;
}
static unsigned _netif_list_flag(kernel_pid_t iface, netopt_t opt, char *str,
unsigned line_thresh)
{
netopt_enable_t enable = NETOPT_DISABLE;
int res = gnrc_netapi_get(iface, opt, 0, &enable,
sizeof(enable));
if ((res >= 0) && (enable == NETOPT_ENABLE)) {
printf("%s", str);
line_thresh = _newline(_LINE_THRESHOLD, ++line_thresh);
}
return line_thresh;
}
#ifdef MODULE_GNRC_IPV6
static void _netif_list_ipv6(ipv6_addr_t *addr, uint8_t flags)
{
char addr_str[IPV6_ADDR_MAX_STR_LEN];
printf("inet6 addr: ");
ipv6_addr_to_str(addr_str, addr, sizeof(addr_str));
printf("%s scope: ", addr_str);
if ((ipv6_addr_is_link_local(addr))) {
printf("local");
}
else {
printf("global");
}
if (flags & GNRC_NETIF_IPV6_ADDRS_FLAGS_ANYCAST) {
printf(" [anycast]");
}
if (flags & GNRC_NETIF_IPV6_ADDRS_FLAGS_STATE_TENTATIVE) {
printf(" TNT[%u]",
flags & GNRC_NETIF_IPV6_ADDRS_FLAGS_STATE_TENTATIVE);
}
else {
switch (flags & GNRC_NETIF_IPV6_ADDRS_FLAGS_STATE_MASK) {
case GNRC_NETIF_IPV6_ADDRS_FLAGS_STATE_DEPRECATED:
printf(" DPR");
break;
case GNRC_NETIF_IPV6_ADDRS_FLAGS_STATE_VALID:
printf(" VAL");
break;
default:
printf(" UNK");
break;
}
}
_newline(0U, _LINE_THRESHOLD);
}
static void _netif_list_groups(ipv6_addr_t *addr)
{
if ((ipv6_addr_is_multicast(addr))) {
char addr_str[IPV6_ADDR_MAX_STR_LEN];
ipv6_addr_to_str(addr_str, addr, sizeof(addr_str));
printf("inet6 group: %s", addr_str);
}
_newline(0U, _LINE_THRESHOLD);
}
#endif
static void _netif_list(kernel_pid_t iface)
{
#ifdef MODULE_GNRC_IPV6
ipv6_addr_t ipv6_addrs[GNRC_NETIF_IPV6_ADDRS_NUMOF];
ipv6_addr_t ipv6_groups[GNRC_NETIF_IPV6_GROUPS_NUMOF];
#endif
uint8_t hwaddr[GNRC_NETIF_L2ADDR_MAXLEN];
uint32_t u32;
uint16_t u16;
int16_t i16;
uint8_t u8;
int res;
netopt_state_t state;
unsigned line_thresh = 1;
printf("Iface %2d ", iface);
res = gnrc_netapi_get(iface, NETOPT_ADDRESS, 0, hwaddr, sizeof(hwaddr));
if (res >= 0) {
char hwaddr_str[res * 3];
printf(" HWaddr: %s ",
gnrc_netif_addr_to_str(hwaddr, res, hwaddr_str));
}
res = gnrc_netapi_get(iface, NETOPT_CHANNEL, 0, &u16, sizeof(u16));
if (res >= 0) {
printf(" Channel: %" PRIu16 " ", u16);
}
res = gnrc_netapi_get(iface, NETOPT_CHANNEL_FREQUENCY, 0, &u32, sizeof(u32));
if (res >= 0) {
printf(" Frequency: %" PRIu32 "Hz ", u32);
}
res = gnrc_netapi_get(iface, NETOPT_CHANNEL_PAGE, 0, &u16, sizeof(u16));
if (res >= 0) {
printf(" Page: %" PRIu16 " ", u16);
}
res = gnrc_netapi_get(iface, NETOPT_NID, 0, &u16, sizeof(u16));
if (res >= 0) {
printf(" NID: 0x%" PRIx16, u16);
}
#ifdef MODULE_GNRC_NETIF_CMD_LORA
res = gnrc_netapi_get(iface, NETOPT_BANDWIDTH, 0, &u8, sizeof(u8));
if (res >= 0) {
printf(" BW: %skHz ", _netopt_bandwidth_str[u8]);
}
res = gnrc_netapi_get(iface, NETOPT_SPREADING_FACTOR, 0, &u8, sizeof(u8));
if (res >= 0) {
printf(" SF: %u ", u8);
}
res = gnrc_netapi_get(iface, NETOPT_CODING_RATE, 0, &u8, sizeof(u8));
if (res >= 0) {
printf(" CR: %s ", _netopt_coding_rate_str[u8]);
}
#endif
res = gnrc_netapi_get(iface, NETOPT_LINK_CONNECTED, 0, &u8, sizeof(u8));
if (res >= 0) {
printf(" Link: %s ", (netopt_enable_t)u8 ? "up" : "down" );
}
line_thresh = _newline(0U, line_thresh);
res = gnrc_netapi_get(iface, NETOPT_ADDRESS_LONG, 0, hwaddr, sizeof(hwaddr));
if (res >= 0) {
char hwaddr_str[res * 3];
printf("Long HWaddr: ");
printf("%s ", gnrc_netif_addr_to_str(hwaddr, res, hwaddr_str));
line_thresh++;
}
line_thresh = _newline(0U, line_thresh);
res = gnrc_netapi_get(iface, NETOPT_TX_POWER, 0, &i16, sizeof(i16));
if (res >= 0) {
printf(" TX-Power: %" PRIi16 "dBm ", i16);
}
res = gnrc_netapi_get(iface, NETOPT_STATE, 0, &state, sizeof(state));
if (res >= 0) {
printf(" State: %s ", _netopt_state_str[state]);
line_thresh++;
}
res = gnrc_netapi_get(iface, NETOPT_RETRANS, 0, &u8, sizeof(u8));
if (res >= 0) {
printf(" max. Retrans.: %u ", (unsigned)u8);
line_thresh++;
}
res = gnrc_netapi_get(iface, NETOPT_CSMA_RETRIES, 0, &u8, sizeof(u8));
if (res >= 0) {
netopt_enable_t enable = NETOPT_DISABLE;
res = gnrc_netapi_get(iface, NETOPT_CSMA, 0, &enable, sizeof(enable));
if ((res >= 0) && (enable == NETOPT_ENABLE)) {
printf(" CSMA Retries: %u ", (unsigned)u8);
}
line_thresh++;
}
line_thresh = _newline(0U, line_thresh);
line_thresh = _netif_list_flag(iface, NETOPT_PROMISCUOUSMODE, "PROMISC ",
line_thresh);
line_thresh = _netif_list_flag(iface, NETOPT_AUTOACK, "AUTOACK ",
line_thresh);
line_thresh = _netif_list_flag(iface, NETOPT_ACK_REQ, "ACK_REQ ",
line_thresh);
line_thresh = _netif_list_flag(iface, NETOPT_PRELOADING, "PRELOAD ",
line_thresh);
line_thresh = _netif_list_flag(iface, NETOPT_RAWMODE, "RAWMODE ",
line_thresh);
line_thresh = _netif_list_flag(iface, NETOPT_MAC_NO_SLEEP, "MAC_NO_SLEEP ",
line_thresh);
line_thresh = _netif_list_flag(iface, NETOPT_CSMA, "CSMA ",
line_thresh);
line_thresh += _LINE_THRESHOLD + 1; /* enforce linebreak after this option */
line_thresh = _netif_list_flag(iface, NETOPT_AUTOCCA, "AUTOCCA",
line_thresh);
line_thresh = _netif_list_flag(iface, NETOPT_IQ_INVERT, "IQ_INVERT",
line_thresh);
line_thresh = _netif_list_flag(iface, NETOPT_SINGLE_RECEIVE, "RX_SINGLE",
line_thresh);
line_thresh = _netif_list_flag(iface, NETOPT_CHANNEL_HOP, "CHAN_HOP",
line_thresh);
res = gnrc_netapi_get(iface, NETOPT_MAX_PDU_SIZE, 0, &u16, sizeof(u16));
if (res > 0) {
printf("L2-PDU:%" PRIu16 " ", u16);
line_thresh++;
}
#ifdef MODULE_GNRC_IPV6
res = gnrc_netapi_get(iface, NETOPT_MAX_PDU_SIZE, GNRC_NETTYPE_IPV6, &u16, sizeof(u16));
if (res > 0) {
printf("MTU:%" PRIu16 " ", u16);
line_thresh++;
}
res = gnrc_netapi_get(iface, NETOPT_HOP_LIMIT, 0, &u8, sizeof(u8));
if (res > 0) {
printf("HL:%u ", u8);
line_thresh++;
}
line_thresh = _netif_list_flag(iface, NETOPT_IPV6_FORWARDING, "RTR ",
line_thresh);
#ifndef MODULE_GNRC_SIXLOWPAN_IPHC
line_thresh += _LINE_THRESHOLD + 1; /* enforce linebreak after this option */
#endif
line_thresh = _netif_list_flag(iface, NETOPT_IPV6_SND_RTR_ADV, "RTR_ADV ",
line_thresh);
#ifdef MODULE_GNRC_SIXLOWPAN
line_thresh = _netif_list_flag(iface, NETOPT_6LO, "6LO ", line_thresh);
#endif
#ifdef MODULE_GNRC_SIXLOWPAN_IPHC
line_thresh += _LINE_THRESHOLD + 1; /* enforce linebreak after this option */
line_thresh = _netif_list_flag(iface, NETOPT_6LO_IPHC, "IPHC ",
line_thresh);
#endif
#endif
res = gnrc_netapi_get(iface, NETOPT_SRC_LEN, 0, &u16, sizeof(u16));
if (res >= 0) {
printf("Source address length: %" PRIu16 , u16);
line_thresh++;
}
line_thresh = _newline(0U, line_thresh);
#ifdef MODULE_GNRC_IPV6
printf("Link type: %s",
(gnrc_netapi_get(iface, NETOPT_IS_WIRED, 0, &u16, sizeof(u16)) > 0) ?
"wired" : "wireless");
_newline(0U, ++line_thresh);
res = gnrc_netapi_get(iface, NETOPT_IPV6_ADDR, 0, ipv6_addrs,
sizeof(ipv6_addrs));
if (res >= 0) {
uint8_t ipv6_addrs_flags[GNRC_NETIF_IPV6_ADDRS_NUMOF];
memset(ipv6_addrs_flags, 0, sizeof(ipv6_addrs_flags));
/* assume it to succeed (otherwise array will stay 0) */
gnrc_netapi_get(iface, NETOPT_IPV6_ADDR_FLAGS, 0, ipv6_addrs_flags,
sizeof(ipv6_addrs_flags));
/* yes, the res of NETOPT_IPV6_ADDR is meant to be here ;-) */
for (unsigned i = 0; i < (res / sizeof(ipv6_addr_t)); i++) {
_netif_list_ipv6(&ipv6_addrs[i], ipv6_addrs_flags[i]);
}
}
res = gnrc_netapi_get(iface, NETOPT_IPV6_GROUP, 0, ipv6_groups,
sizeof(ipv6_groups));
if (res >= 0) {
for (unsigned i = 0; i < (res / sizeof(ipv6_addr_t)); i++) {
_netif_list_groups(&ipv6_groups[i]);
}
}
#endif
#ifdef MODULE_L2FILTER
l2filter_t *filter = NULL;
res = gnrc_netapi_get(iface, NETOPT_L2FILTER, 0, &filter, sizeof(filter));
if (res > 0) {
#ifdef MODULE_L2FILTER_WHITELIST
puts("\n White-listed link layer addresses:");
#else
puts("\n Black-listed link layer addresses:");
#endif
int count = 0;
for (unsigned i = 0; i < L2FILTER_LISTSIZE; i++) {
if (filter[i].addr_len > 0) {
char hwaddr_str[filter[i].addr_len * 3];
gnrc_netif_addr_to_str(filter[i].addr, filter[i].addr_len,
hwaddr_str);
printf(" %2i: %s\n", count++, hwaddr_str);
}
}
if (count == 0) {
puts(" --- none ---");
}
}
#endif
#ifdef MODULE_NETSTATS_L2
puts("");
_netif_stats(iface, NETSTATS_LAYER2, false);
#endif
#ifdef MODULE_NETSTATS_IPV6
_netif_stats(iface, NETSTATS_IPV6, false);
#endif
puts("");
}
static int _netif_set_u32(kernel_pid_t iface, netopt_t opt, uint32_t context,
char *u32_str)
{
unsigned long int res;
bool hex = false;
if (_is_number(u32_str)) {
if ((res = strtoul(u32_str, NULL, 10)) == ULONG_MAX) {
puts("error: unable to parse value.\n"
"Must be a 32-bit unsigned integer (dec or hex)\n");
return 1;
}
}
else {
if ((res = strtoul(u32_str, NULL, 32)) == ULONG_MAX) {
puts("error: unable to parse value.\n"
"Must be a 32-bit unsigned integer (dec or hex)\n");
return 1;
}
hex = true;
}
assert(res <= ULONG_MAX);
if (gnrc_netapi_set(iface, opt, context, (uint32_t *)&res,
sizeof(uint32_t)) < 0) {
printf("error: unable to set ");
_print_netopt(opt);
puts("");
return 1;
}
printf("success: set ");
_print_netopt(opt);
printf(" on interface %" PRIkernel_pid " to ", iface);
if (hex) {
printf("0x%04lx\n", res);
}
else {
printf("%lu\n", res);
}
return 0;
}
#ifdef MODULE_GNRC_NETIF_CMD_LORA
static int _netif_set_bandwidth(kernel_pid_t iface, char *value)
{
uint8_t bw;
if (strcmp("125", value) == 0) {
bw = LORA_BW_125_KHZ;
}
else if (strcmp("250", value) == 0) {
bw = LORA_BW_250_KHZ;
}
else if (strcmp("500", value) == 0) {
bw = LORA_BW_500_KHZ;
}
else {
puts("usage: ifconfig <if_id> set bw [125|250|500]");
return 1;
}
if (gnrc_netapi_set(iface, NETOPT_BANDWIDTH, 0,
&bw, sizeof(uint8_t)) < 0) {
printf("error: unable to set bandwidth to %s\n", value);
return 1;
}
printf("success: set bandwidth of interface %" PRIkernel_pid " to %s\n",
iface, value);
return 0;
}
static int _netif_set_coding_rate(kernel_pid_t iface, char *value)
{
uint8_t cr;
if (strcmp("4/5", value) == 0) {
cr = LORA_CR_4_5;
}
else if (strcmp("4/6", value) == 0) {
cr = LORA_CR_4_6;
}
else if (strcmp("4/7", value) == 0) {
cr = LORA_CR_4_7;
}
else if (strcmp("4/8", value) == 0) {
cr = LORA_CR_4_8;
}
else {
puts("usage: ifconfig <if_id> set cr [4/5|4/6|4/7|4/8]");
return 1;
}
if (gnrc_netapi_set(iface, NETOPT_CODING_RATE, 0,
&cr, sizeof(uint8_t)) < 0) {
printf("error: unable to set coding rate to %s\n", value);
return 1;
}
printf("success: set coding rate of interface %" PRIkernel_pid " to %s\n",
iface, value);
return 0;
}
#endif /* MODULE_GNRC_NETIF_CMD_LORA */
static int _netif_set_u16(kernel_pid_t iface, netopt_t opt, uint16_t context,
char *u16_str)
{
unsigned long int res;
bool hex = false;
if (_is_number(u16_str)) {
if ((res = strtoul(u16_str, NULL, 10)) == ULONG_MAX) {
puts("error: unable to parse value.\n"
"Must be a 16-bit unsigned integer (dec or hex)\n");
return 1;
}
}
else {
if ((res = strtoul(u16_str, NULL, 16)) == ULONG_MAX) {
puts("error: unable to parse value.\n"
"Must be a 16-bit unsigned integer (dec or hex)\n");
return 1;
}
hex = true;
}
if (res > 0xffff) {
puts("error: unable to parse value.\n"
"Must be a 16-bit unsigned integer (dec or hex)\n");
return 1;
}
if (gnrc_netapi_set(iface, opt, context, (uint16_t *)&res,
sizeof(uint16_t)) < 0) {
printf("error: unable to set ");
_print_netopt(opt);
puts("");
return 1;
}
printf("success: set ");
_print_netopt(opt);
printf(" on interface %" PRIkernel_pid " to ", iface);
if (hex) {
printf("0x%04lx\n", res);
}
else {
printf("%lu\n", res);
}
return 0;
}
static int _netif_set_i16(kernel_pid_t iface, netopt_t opt, char *i16_str)
{
int16_t val = atoi(i16_str);
if (gnrc_netapi_set(iface, opt, 0, (int16_t *)&val, sizeof(int16_t)) < 0) {
printf("error: unable to set ");
_print_netopt(opt);
puts("");
return 1;
}
printf("success: set ");
_print_netopt(opt);
printf(" on interface %" PRIkernel_pid " to %i\n", iface, val);
return 0;
}
static int _netif_set_u8(kernel_pid_t iface, netopt_t opt, uint16_t context,
char *u8_str)
{
uint8_t val = atoi(u8_str);
if (gnrc_netapi_set(iface, opt, context, (uint8_t *)&val,
sizeof(uint8_t)) < 0) {
printf("error: unable to set ");
_print_netopt(opt);
puts("");
return 1;
}
printf("success: set ");
_print_netopt(opt);
printf(" on interface %" PRIkernel_pid " to %i\n", iface, val);
return 0;
}
static int _netif_set_flag(kernel_pid_t iface, netopt_t opt,
netopt_enable_t set)
{
if (gnrc_netapi_set(iface, opt, 0, &set, sizeof(netopt_enable_t)) < 0) {
puts("error: unable to set option");
return 1;
}
printf("success: %sset option\n", (set) ? "" : "un");
return 0;
}
static int _netif_set_addr(kernel_pid_t iface, netopt_t opt, char *addr_str)
{
uint8_t addr[GNRC_NETIF_L2ADDR_MAXLEN];
size_t addr_len = gnrc_netif_addr_from_str(addr_str, addr);
if (addr_len == 0) {
puts("error: unable to parse address.\n"
"Must be of format [0-9a-fA-F]{2}(:[0-9a-fA-F]{2})*\n"
"(hex pairs delimited by colons)");
return 1;
}
if (gnrc_netapi_set(iface, opt, 0, addr, addr_len) < 0) {
printf("error: unable to set ");
_print_netopt(opt);
puts("");
return 1;
}
printf("success: set ");
_print_netopt(opt);
printf(" on interface %" PRIkernel_pid " to %s\n", iface, addr_str);
return 0;
}
static int _netif_set_state(kernel_pid_t iface, char *state_str)
{
netopt_state_t state;
if ((strcmp("off", state_str) == 0) || (strcmp("OFF", state_str) == 0)) {
state = NETOPT_STATE_OFF;
}
else if ((strcmp("sleep", state_str) == 0) ||
(strcmp("SLEEP", state_str) == 0)) {
state = NETOPT_STATE_SLEEP;
}
else if ((strcmp("idle", state_str) == 0) ||
(strcmp("IDLE", state_str) == 0)) {
state = NETOPT_STATE_IDLE;
}
else if ((strcmp("rx", state_str) == 0) ||
(strcmp("RX", state_str) == 0)) {
state = NETOPT_STATE_RX;
}
else if ((strcmp("tx", state_str) == 0) ||
(strcmp("TX", state_str) == 0)) {
state = NETOPT_STATE_TX;
}
else if ((strcmp("reset", state_str) == 0) ||
(strcmp("RESET", state_str) == 0)) {
state = NETOPT_STATE_RESET;
}
else if ((strcmp("standby", state_str) == 0) ||
(strcmp("STANDBY", state_str) == 0)) {
state = NETOPT_STATE_STANDBY;
}
else {
puts("usage: ifconfig <if_id> set state [off|sleep|idle|rx|tx|reset|standby]");
return 1;
}
if (gnrc_netapi_set(iface, NETOPT_STATE, 0,
&state, sizeof(netopt_state_t)) < 0) {
printf("error: unable to set state to %s\n", _netopt_state_str[state]);
return 1;
}
printf("success: set state of interface %" PRIkernel_pid " to %s\n", iface,
_netopt_state_str[state]);
return 0;
}
static int _hex_to_int(char c) {
if ('0' <= c && c <= '9') {
return c - '0';
}
else if ('a' <= c && c <= 'f') {
return c - 'a';
}
else if ('A' <= c && c <= 'F') {
return c - 'A';
}
else {
return -1;
}
}
static int _netif_set_encrypt_key(kernel_pid_t iface, netopt_t opt, char *key_str)
{
size_t str_len = strlen(key_str);
size_t key_len = str_len / 2;
uint8_t key[key_len];
if (str_len == 14U) {
printf("\nNotice: setting 56 bit key.");
}
else if (str_len == 16U) {
printf("\nNotice: setting 64 bit key.");
}
else if (str_len == 32U) {
printf("\nNotice: setting 128 bit key.");
}
else if (str_len == 48U) {
printf("\nNotice: setting 192 bit key.");
}
else if (str_len == 64U) {
printf("\nNotice: setting 256 bit key.");
}
else if (str_len == 128U) {
printf("\nNotice: setting 512 bit key.");
}
else {
printf("error: invalid key size.\n");
return 1;
}
/* Convert any char from ASCII table in hex format */
for (size_t i = 0; i < str_len; i += 2) {
int i1 = _hex_to_int(key_str[i]);
int i2 = _hex_to_int(key_str[i + 1]);
if (i1 == -1 || i2 == -1) {
puts("error: unable to parse key");
return 1;
}
key[i / 2] = (uint8_t)((i1 << 4) + i2);
}
if (gnrc_netapi_set(iface, opt, 0, key, key_len) < 0) {
puts("error: unable to set encryption key");
return 1;
}
printf("success: set encryption key on interface %" PRIkernel_pid " to \n",
iface);
for (size_t i = 0; i < key_len; i++) {
/* print the hex value of the key */
printf("%02x", key[i]);
}
puts("");
return 0;
}
#ifdef MODULE_L2FILTER
static int _netif_addrm_l2filter(kernel_pid_t iface, char *val, bool add)
{
uint8_t addr[GNRC_NETIF_L2ADDR_MAXLEN];
size_t addr_len = gnrc_netif_addr_from_str(val, addr);
if ((addr_len == 0) || (addr_len > L2FILTER_ADDR_MAXLEN)) {
puts("error: given address is invalid");
return 1;
}
if (add) {
if (gnrc_netapi_set(iface, NETOPT_L2FILTER, 0, addr, addr_len) < 0) {
puts("unable to add link layer address to filter");
return 1;
}
puts("successfully added address to filter");
}
else {
if (gnrc_netapi_set(iface, NETOPT_L2FILTER_RM, 0, addr, addr_len) < 0) {
puts("unable to remove link layer address from filter");
return 1;
}
puts("successfully removed address to filter");
}
return 0;
}
static void _l2filter_usage(const char *cmd)
{
printf("usage: %s <if_id> l2filter {add|del} <addr>\n", cmd);
}
#endif
static void _usage(char *cmd)
{
printf("usage: %s\n", cmd);
_set_usage(cmd);
_flag_usage(cmd);
_add_usage(cmd);
_del_usage(cmd);
#ifdef MODULE_L2FILTER
_l2filter_usage(cmd);
#endif
#ifdef MODULE_NETSTATS
_stats_usage(cmd);
#endif
}
static int _netif_set(char *cmd_name, kernel_pid_t iface, char *key, char *value)
{
if ((strcmp("addr", key) == 0) || (strcmp("addr_short", key) == 0)) {
return _netif_set_addr(iface, NETOPT_ADDRESS, value);
}
else if (strcmp("addr_long", key) == 0) {
return _netif_set_addr(iface, NETOPT_ADDRESS_LONG, value);
}
else if (strcmp("cca_threshold", key) == 0) {
return _netif_set_u8(iface, NETOPT_CCA_THRESHOLD, 0, value);
}
else if ((strcmp("frequency", key) == 0) || (strcmp("freq", key) == 0)) {
return _netif_set_u32(iface, NETOPT_CHANNEL_FREQUENCY, 0, value);
}
#ifdef MODULE_GNRC_NETIF_CMD_LORA
else if ((strcmp("bandwidth", key) == 0) || (strcmp("bw", key) == 0)) {
return _netif_set_bandwidth(iface, value);
}
else if ((strcmp("spreading_factor", key) == 0) || (strcmp("sf", key) == 0)) {
return _netif_set_u8(iface, NETOPT_SPREADING_FACTOR, 0, value);
}
else if ((strcmp("coding_rate", key) == 0) || (strcmp("cr", key) == 0)) {
return _netif_set_coding_rate(iface, value);
}
#endif
else if ((strcmp("channel", key) == 0) || (strcmp("chan", key) == 0)) {
return _netif_set_u16(iface, NETOPT_CHANNEL, 0, value);
}
else if (strcmp("csma_retries", key) == 0) {
return _netif_set_u8(iface, NETOPT_CSMA_RETRIES, 0, value);
}
else if ((strcmp("hl", key) == 0) || (strcmp("hop_limit", key) == 0)) {
return _netif_set_u8(iface, NETOPT_HOP_LIMIT, 0, value);
}
else if (strcmp("key", key) == 0) {
return _netif_set_encrypt_key(iface, NETOPT_ENCRYPTION_KEY, value);
}
#ifdef MODULE_GNRC_IPV6
else if (strcmp("mtu", key) == 0) {
return _netif_set_u16(iface, NETOPT_MAX_PDU_SIZE, GNRC_NETTYPE_IPV6,
value);
}
#endif
else if ((strcmp("nid", key) == 0) || (strcmp("pan", key) == 0) ||
(strcmp("pan_id", key) == 0)) {
return _netif_set_u16(iface, NETOPT_NID, 0, value);
}
else if (strcmp("page", key) == 0) {
return _netif_set_u16(iface, NETOPT_CHANNEL_PAGE, 0, value);
}
else if (strcmp("power", key) == 0) {
return _netif_set_i16(iface, NETOPT_TX_POWER, value);
}
else if (strcmp("retrans", key) == 0) {
return _netif_set_u8(iface, NETOPT_RETRANS, 0, value);
}
else if (strcmp("src_len", key) == 0) {
return _netif_set_u16(iface, NETOPT_SRC_LEN, 0, value);
}
else if (strcmp("state", key) == 0) {
return _netif_set_state(iface, value);
}
_set_usage(cmd_name);
return 1;
}
static int _netif_flag(char *cmd, kernel_pid_t iface, char *flag)
{
netopt_enable_t set = NETOPT_ENABLE;
if (flag[0] == '-') {
set = NETOPT_DISABLE;
flag++;
}
for (unsigned i = 0; i < ARRAY_SIZE(flag_cmds); i++) {
if (strcmp(flag_cmds[i].name, flag) == 0) {
return _netif_set_flag(iface, flag_cmds[i].opt, set);
}
}
_flag_usage(cmd);
return 1;
}
#ifdef MODULE_GNRC_IPV6
static uint8_t _get_prefix_len(char *addr)
{
int prefix_len = ipv6_addr_split(addr, '/', _IPV6_DEFAULT_PREFIX_LEN);
if (prefix_len < 1) {
prefix_len = _IPV6_DEFAULT_PREFIX_LEN;
}
return prefix_len;
}
#endif
static int _netif_add(char *cmd_name, kernel_pid_t iface, int argc, char **argv)
{
#ifdef MODULE_GNRC_IPV6
enum {
_UNICAST = 0,
_ANYCAST
} type = _UNICAST;
char *addr_str = argv[0];
ipv6_addr_t addr;
uint16_t flags = GNRC_NETIF_IPV6_ADDRS_FLAGS_STATE_VALID;
uint8_t prefix_len;
if (argc > 1) {
if (strcmp(argv[0], "anycast") == 0) {
type = _ANYCAST;
addr_str = argv[1];
}
else if (strcmp(argv[0], "unicast") == 0) {
/* type already set to unicast */
addr_str = argv[1];
}
else {
_add_usage(cmd_name);
return 1;
}
}
prefix_len = _get_prefix_len(addr_str);
if (ipv6_addr_from_str(&addr, addr_str) == NULL) {
puts("error: unable to parse IPv6 address.");
return 1;
}
if (ipv6_addr_is_multicast(&addr)) {
if (gnrc_netapi_set(iface, NETOPT_IPV6_GROUP, 0, &addr,
sizeof(addr)) < 0) {
printf("error: unable to join IPv6 multicast group\n");
return 1;
}
}
else {
if (type == _ANYCAST) {
flags |= GNRC_NETIF_IPV6_ADDRS_FLAGS_ANYCAST;
}
flags |= (prefix_len << 8U);
if (gnrc_netapi_set(iface, NETOPT_IPV6_ADDR, flags, &addr,
sizeof(addr)) < 0) {
printf("error: unable to add IPv6 address\n");
return 1;
}
}
printf("success: added %s/%d to interface %" PRIkernel_pid "\n", addr_str,
prefix_len, iface);
return 0;
#else
(void)cmd_name;
(void)iface;
(void)argc;
(void)argv;
puts("error: unable to add IPv6 address.");
return 1;
#endif
}
static int _netif_del(kernel_pid_t iface, char *addr_str)
{
#ifdef MODULE_GNRC_IPV6
ipv6_addr_t addr;
if (ipv6_addr_from_str(&addr, addr_str) == NULL) {
puts("error: unable to parse IPv6 address.");
return 1;
}
if (ipv6_addr_is_multicast(&addr)) {
if (gnrc_netapi_set(iface, NETOPT_IPV6_GROUP_LEAVE, 0, &addr,
sizeof(addr)) < 0) {
printf("error: unable to leave IPv6 multicast group\n");
return 1;
}
}
else {
if (gnrc_netapi_set(iface, NETOPT_IPV6_ADDR_REMOVE, 0, &addr,
sizeof(addr)) < 0) {
printf("error: unable to remove IPv6 address\n");
return 1;
}
}
printf("success: removed %s to interface %" PRIkernel_pid "\n", addr_str,
iface);
return 0;
#else
(void)iface;
(void)addr_str;
puts("error: unable to delete IPv6 address.");
return 1;
#endif
}
/* shell commands */
#ifdef MODULE_GNRC_TXTSND
int _gnrc_netif_send(int argc, char **argv)
{
kernel_pid_t iface;
uint8_t addr[GNRC_NETIF_L2ADDR_MAXLEN];
size_t addr_len;
gnrc_pktsnip_t *pkt, *hdr;
gnrc_netif_hdr_t *nethdr;
uint8_t flags = 0x00;
if (argc < 4) {
printf("usage: %s <if> [<L2 addr>|bcast] <data>\n", argv[0]);
return 1;
}
/* parse interface */
iface = atoi(argv[1]);
if (!_is_iface(iface)) {
puts("error: invalid interface given");
return 1;
}
/* parse address */
addr_len = gnrc_netif_addr_from_str(argv[2], addr);
if (addr_len == 0) {
if (strcmp(argv[2], "bcast") == 0) {
flags |= GNRC_NETIF_HDR_FLAGS_BROADCAST;
}
else {
puts("error: invalid address given");
return 1;
}
}
/* put packet together */
pkt = gnrc_pktbuf_add(NULL, argv[3], strlen(argv[3]), GNRC_NETTYPE_UNDEF);
if (pkt == NULL) {
puts("error: packet buffer full");
return 1;
}
hdr = gnrc_netif_hdr_build(NULL, 0, addr, addr_len);
if (hdr == NULL) {
puts("error: packet buffer full");
gnrc_pktbuf_release(pkt);
return 1;
}
LL_PREPEND(pkt, hdr);
nethdr = (gnrc_netif_hdr_t *)hdr->data;
nethdr->flags = flags;
/* and send it */
if (gnrc_netapi_send(iface, pkt) < 1) {
puts("error: unable to send");
gnrc_pktbuf_release(pkt);
return 1;
}
return 0;
}
#endif
int _gnrc_netif_config(int argc, char **argv)
{
if (argc < 2) {
gnrc_netif_t *netif = NULL;
while ((netif = gnrc_netif_iter(netif))) {
_netif_list(netif->pid);
}
return 0;
}
else if (_is_number(argv[1])) {
kernel_pid_t iface = atoi(argv[1]);
if (_is_iface(iface)) {
if (argc < 3) {
_netif_list(iface);
return 0;
}
else if (strcmp(argv[2], "set") == 0) {
if (argc < 5) {
_set_usage(argv[0]);
return 1;
}
return _netif_set(argv[0], iface, argv[3], argv[4]);
}
else if (strcmp(argv[2], "add") == 0) {
if (argc < 4) {
_add_usage(argv[0]);
return 1;
}
return _netif_add(argv[0], (kernel_pid_t)iface, argc - 3, argv + 3);
}
else if (strcmp(argv[2], "del") == 0) {
if (argc < 4) {
_del_usage(argv[0]);
return 1;
}
return _netif_del((kernel_pid_t)iface, argv[3]);
}
#ifdef MODULE_L2FILTER
else if (strcmp(argv[2], "l2filter") == 0) {
if (argc < 5) {
_l2filter_usage(argv[2]);
}
else if (strcmp(argv[3], "add") == 0) {
return _netif_addrm_l2filter(iface, argv[4], true);
}
else if (strcmp(argv[3], "del") == 0) {
return _netif_addrm_l2filter(iface, argv[4], false);
}
else {
_l2filter_usage(argv[2]);
}
return 1;
}
#endif
#ifdef MODULE_NETSTATS
else if (strcmp(argv[2], "stats") == 0) {
uint8_t module;
bool reset = false;
/* check for requested module */
if ((argc == 3) || (strcmp(argv[3], "all") == 0)) {
module = NETSTATS_ALL;
}
else if (strcmp(argv[3], "l2") == 0) {
module = NETSTATS_LAYER2;
}
else if (strcmp(argv[3], "ipv6") == 0) {
module = NETSTATS_IPV6;
}
else {
printf("Module %s doesn't exist or does not provide statistics.\n", argv[3]);
return 0;
}
/* check if reset flag was given */
if ((argc > 4) && (strncmp(argv[4], "reset", 5) == 0)) {
reset = true;
}
if (module & NETSTATS_LAYER2) {
_netif_stats((kernel_pid_t) iface, NETSTATS_LAYER2, reset);
}
if (module & NETSTATS_IPV6) {
_netif_stats((kernel_pid_t) iface, NETSTATS_IPV6, reset);
}
return 1;
}
#endif
else if (strcmp(argv[2], "help") == 0) {
_usage(argv[0]);
return 0;
}
else {
return _netif_flag(argv[0], iface, argv[2]);
}
}
else {
puts("error: invalid interface given");
return 1;
}
}
_usage(argv[0]);
return 1;
}