1
0
mirror of https://github.com/RIOT-OS/RIOT.git synced 2024-12-29 04:50:03 +01:00
RIOT/cpu/atmega_common/periph/i2c.c
Gunar Schorcht 007e29ebb5 cpu/periph/i2c: update implementations to new I2C API
Make all `spi_acquire` implementations return `void` and add assertions to check for valid device identifier where missing.
2021-11-29 06:35:25 +01:00

334 lines
9.1 KiB
C

/*
* Copyright (C) 2017 Hamburg University of Applied Sciences, Dimitri Nahm
*
* This file is subject to the terms and conditions of the GNU Lesser
* General Public License v2.1. See the file LICENSE in the top level
* directory for more details.
*/
/**
* @ingroup cpu_atmega_common
* @ingroup drivers_periph_i2c
* @{
*
* @file
* @brief Low-level I2C driver implementation for atmega common
*
* @note This implementation only implements the 7-bit addressing mode.
*
* @author Dimitri Nahm <dimitri.nahm@haw-hamburg.de>
* @author Laurent Navet <laurent.navet@gmail.com>
*
* @}
*/
#include <assert.h>
#include <stdint.h>
#include <errno.h>
#include "cpu.h"
#include "mutex.h"
#include "periph/i2c.h"
#include "periph_conf.h"
#define ENABLE_DEBUG 0
#include "debug.h"
#define MT_START 0x08
#define MT_START_REPEATED 0x10
#define MT_ADDRESS_ACK 0x18
#define MT_DATA_ACK 0x28
#define MR_ADDRESS_ACK 0x40
#define ATMEGA_I2C_FLAG_WRITE 0
#define ATMEGA_I2C_FLAG_READ 1
/* static function definitions */
static int _start(uint8_t address, uint8_t rw_flag);
static int _write(const uint8_t *data, int length);
static void _stop(void);
static void i2c_poweron(i2c_t dev);
static mutex_t locks[I2C_NUMOF];
/* TODO : 10 bits addresses */
void i2c_init(i2c_t dev)
{
/* check if the line is valid */
assert(dev < I2C_NUMOF);
mutex_init(&locks[dev]);
/* TWI Bit Rate Register - division factor for the bit rate generator */
unsigned long twibrr;
/* TWI Prescaler Bits - default 0 */
uint8_t twipb = 0;
/* calculate speed configuration */
switch (I2C_BUS_SPEED) {
case I2C_SPEED_LOW:
if ((CLOCK_CORECLOCK > 20000000UL)
|| (CLOCK_CORECLOCK < 1000000UL)) {
DEBUG("[i2c] init: bus speed incompatible with core clock\n");
return;
}
twibrr = ((CLOCK_CORECLOCK / 10000UL) - 16) / (2 * 4); /* CLK Prescaler 4 */
twipb = 1;
break;
case I2C_SPEED_NORMAL:
if ((CLOCK_CORECLOCK > 50000000UL)
|| (CLOCK_CORECLOCK < 2000000UL)) {
DEBUG("[i2c] init: bus speed incompatible with core clock\n");
return;
}
twibrr = ((CLOCK_CORECLOCK / 100000UL) - 16) / 2;
break;
case I2C_SPEED_FAST:
if (CLOCK_CORECLOCK < 7500000UL) {
DEBUG("[i2c] init: bus speed incompatible with core clock\n");
return;
}
twibrr = ((CLOCK_CORECLOCK / 400000UL) - 16) / 2;
break;
case I2C_SPEED_FAST_PLUS:
if (CLOCK_CORECLOCK < 18000000UL) {
DEBUG("[i2c] init: bus speed incompatible with core clock\n");
return;
}
twibrr = ((CLOCK_CORECLOCK / 1000000UL) - 16) / 2;
break;
case I2C_SPEED_HIGH:
if (CLOCK_CORECLOCK < 62000000UL) {
DEBUG("[i2c] init: bus speed incompatible with core clock\n");
return;
}
twibrr = ((CLOCK_CORECLOCK / 3400000UL) - 16) / 2;
break;
default:
DEBUG("[i2c] init: invalid bus speed\n");
return;
}
/* set pull-up on SCL and SDA */
I2C_PORT_REG |= (I2C_PIN_MASK);
/* enable I2C clock */
i2c_poweron(dev);
/* disable device */
TWCR &= ~(1 << TWEN);
/* configure I2C clock */
TWBR = (uint8_t)twibrr; /* Set TWI Bit Rate Register */
TWSR &= ~(0x03); /* Reset TWI Prescaler Bits */
TWSR |= twipb; /* Set TWI Prescaler Bits */
/* enable device */
TWCR |= (1 << TWEN);
}
int i2c_read_bytes(i2c_t dev, uint16_t addr, void *data, size_t len,
uint8_t flags)
{
(void)dev;
assert(dev < I2C_NUMOF);
/* Check for unsupported operations */
if (flags & I2C_ADDR10) {
return -EOPNOTSUPP;
}
/* Check for wrong arguments given */
if (data == NULL || len == 0) {
return -EINVAL;
}
uint8_t *my_data = data;
/* send start condition and slave address */
if (!(flags & I2C_NOSTART)) {
if (_start(addr, ATMEGA_I2C_FLAG_READ) < 0) {
return -ENXIO;
}
}
for (size_t i = 0; i < len; i++) {
/* Send NACK for last received byte */
if ((len - i) == 1) {
TWCR = (1 << TWEN) | (1 << TWINT);
}
else {
TWCR = (1 << TWEA) | (1 << TWEN) | (1 << TWINT);
}
DEBUG("[i2c] i2c_read_bytes: Wait for byte\n");
/* Wait for TWINT Flag set. This indicates that DATA has been received.*/
while (!(TWCR & (1 << TWINT))) {}
/* receive data byte */
my_data[i] = TWDR;
DEBUG("[i2c] i2c_read_bytes: Byte received\n");
}
/* end transmission */
if (!(flags & I2C_NOSTOP)) {
_stop();
}
return 0;
}
int i2c_write_bytes(i2c_t dev, uint16_t addr, const void *data, size_t len,
uint8_t flags)
{
(void)dev;
assert(dev < I2C_NUMOF);
/* Check for unsupported operations */
if (flags & I2C_ADDR10) {
return -EOPNOTSUPP;
}
/* Check for wrong arguments given */
if (data == NULL || len == 0) {
return -EINVAL;
}
/* start transmission and send slave address */
if (!(flags & I2C_NOSTART)) {
if (_start(addr, ATMEGA_I2C_FLAG_WRITE) < 0) {
DEBUG("[i2c] i2c_write_bytes: start failed\n");
return -ENXIO;
}
}
/* send out data bytes */
if (_write(data, len) < 0) {
DEBUG("[i2c] i2c_write_bytes: write failed\n");
return -EIO;
}
/* end transmission */
if (!(flags & I2C_NOSTOP)) {
DEBUG("[i2c] i2c_write_bytes: sending stop\n");
_stop();
}
return 0;
}
void i2c_acquire(i2c_t dev)
{
assert(dev < I2C_NUMOF);
mutex_lock(&locks[dev]);
}
void i2c_release(i2c_t dev)
{
assert(dev < I2C_NUMOF);
mutex_unlock(&locks[dev]);
}
static void i2c_poweron(i2c_t dev)
{
assert(dev < I2C_NUMOF);
(void) dev;
power_twi_enable();
}
static int _start(uint8_t address, uint8_t rw_flag)
{
/* Reset I2C Interrupt Flag and transmit START condition */
TWCR = (1 << TWINT) | (1 << TWSTA) | (1 << TWEN);
DEBUG("[i2c] start: START condition transmitted\n");
/* Wait for TWINT Flag set. This indicates that the START has been
* transmitted, and ACK/NACK has been received.*/
while (!(TWCR & (1 << TWINT))) {}
/* Check value of TWI Status Register. Mask prescaler bits.
* If status different from START go to ERROR */
if ((TWSR & 0xF8) == MT_START) {
DEBUG("[i2c] start: I2C Status is: START\n");
}
else if ((TWSR & 0xF8) == MT_START_REPEATED) {
DEBUG("[i2c] start: I2C Status is: START REPEATED\n");
}
else {
DEBUG("[i2c] start: I2C Status Register is different from "
"START/START_REPEATED\n");
_stop();
return -1;
}
/* Load ADDRESS and R/W Flag into TWDR Register.
* Clear TWINT bit in TWCR to start transmission of ADDRESS */
TWDR = (address << 1) | rw_flag;
TWCR = (1 << TWINT) | (1 << TWEN);
DEBUG("[i2c] start: ADDRESS and FLAG transmitted\n");
/* Wait for TWINT Flag set. This indicates that ADDRESS has been transmitted.*/
while (!(TWCR & (1 << TWINT))) {}
/* Check value of TWI Status Register. Mask prescaler bits.
* If status different from ADDRESS ACK go to ERROR */
if ((TWSR & 0xF8) == MT_ADDRESS_ACK) {
DEBUG("[i2c] start: ACK has been received for ADDRESS %02X (write)\n",
address);
}
else if ((TWSR & 0xF8) == MR_ADDRESS_ACK) {
DEBUG("[i2c] start: ACK has been received for ADDRESS %02X (read)\n",
address);
}
else {
DEBUG("[i2c] start: NACK has been received for ADDRESS %02X \n",
address);
_stop();
return -2;
}
return 0;
}
/* TODO : const uint8_t data instead of *data */
static int _write(const uint8_t *data, int length)
{
for (int i = 0; i < length; i++) {
/* Load DATA into TWDR Register.
* Clear TWINT bit in TWCR to start transmission of data */
TWDR = data[i];
TWCR = (1 << TWINT) | (1 << TWEN);
DEBUG("[i2c] write: Byte transmitted\n");
/* Wait for TWINT Flag set. This indicates that DATA has been transmitted.*/
while (!(TWCR & (1 << TWINT))) {}
/* Check value of TWI Status Register. Mask prescaler bits. If status
* different from MT_DATA_ACK, return number of transmitted bytes */
if ((TWSR & 0xF8) != MT_DATA_ACK) {
DEBUG("[i2c] write: NACK has been received\n");
return -1;
}
else {
DEBUG("[i2c] write: ACK has been received\n");
}
}
return 0;
}
static void _stop(void)
{
/* Reset I2C Interrupt Flag and transmit STOP condition */
TWCR = (1 << TWINT) | (1 << TWSTO) | (1 << TWEN);
/* Wait for STOP Flag reset. This indicates that STOP has been transmitted.*/
while (TWCR & (1 << TWSTO)) {}
DEBUG("[i2c] stop: STOP condition transmitted\n");
TWCR = 0;
}