1
0
mirror of https://github.com/RIOT-OS/RIOT.git synced 2025-01-18 09:52:45 +01:00
RIOT/cpu/atmega_common/periph/timer.c
Gerson Fernando Budke 783afbc666 cpu/avr8_common: Add AVR8_ISR macro
The current ISR implementation for AVR8 requires use of
avr8_[enter/exit]_isr pair which add some boilerplate on code.
This add AVR8_ISR which clean-up the code and make it simpler
and hides any schedule detail from the user perspective.

This is a preparation for future scheduling and irq optimizations.

Signed-off-by: Gerson Fernando Budke <nandojve@gmail.com>
2023-07-05 20:00:19 +02:00

366 lines
9.5 KiB
C

/*
* Copyright (C) 2014 Freie Universität Berlin, Hinnerk van Bruinehsen
* 2023 Hugues Larrive
* 2023 Gerson Fernando Budke
*
* This file is subject to the terms and conditions of the GNU Lesser
* General Public License v2.1. See the file LICENSE in the top level
* directory for more details.
*/
/**
* @ingroup cpu_atmega_common
* @ingroup drivers_periph_timer
* @{
*
* @file
* @brief Low-level timer driver implementation for the ATmega family
*
* @author Hauke Petersen <hauke.petersen@fu-berlin.de>
* @author Hinnerk van Bruinehsen <h.v.bruinehsen@fu-berlin.de>
* @author Hugues Larrive <hugues.larrive@pm.me>
* @author Gerson Fernando Budke <nandojve@gmail.com>
*
* @}
*/
#include <assert.h>
#include <avr/interrupt.h>
#include "board.h"
#include "cpu.h"
#include "irq.h"
#include "thread.h"
#include "periph/timer.h"
#include "periph_conf.h"
#define ENABLE_DEBUG 0
#include "debug.h"
/**
* @brief We have 5 possible prescaler values
*/
#define PRESCALE_NUMOF (5U)
/**
* @brief Possible prescaler values, encoded as 2 ^ val
*/
static const __flash uint8_t prescalers[] = { 0, 3, 6, 8, 10 };
/**
* @brief Timer state context
*/
typedef struct {
mega_timer_t *dev; /**< timer device */
volatile uint8_t *mask; /**< address of interrupt mask register */
volatile uint8_t *flag; /**< address of interrupt flag register */
timer_cb_t cb; /**< interrupt callback */
void *arg; /**< interrupt callback argument */
uint8_t mode; /**< remember the configured mode */
uint8_t isrs; /**< remember the interrupt state */
} ctx_t;
/**
* @brief Allocate memory for saving the device states
*/
static ctx_t ctx[] = {
#ifdef TIMER_0
{ TIMER_0, TIMER_0_MASK, TIMER_0_FLAG, NULL, NULL, 0, 0 },
#endif
#ifdef TIMER_1
{ TIMER_1, TIMER_1_MASK, TIMER_1_FLAG, NULL, NULL, 0, 0 },
#endif
#ifdef TIMER_2
{ TIMER_2, TIMER_2_MASK, TIMER_2_FLAG, NULL, NULL, 0, 0 },
#endif
#ifdef TIMER_3
{ TIMER_3, TIMER_3_MASK, TIMER_3_FLAG, NULL, NULL, 0, 0 },
#endif
};
static unsigned _oneshot;
static inline void set_oneshot(tim_t tim, int chan)
{
_oneshot |= (1 << chan) << (TIMER_CHANNEL_NUMOF * tim);
}
static inline void clear_oneshot(tim_t tim, int chan)
{
_oneshot &= ~((1 << chan) << (TIMER_CHANNEL_NUMOF * tim));
}
static inline bool is_oneshot(tim_t tim, int chan)
{
return _oneshot & ((1 << chan) << (TIMER_CHANNEL_NUMOF * tim));
}
/**
* @brief Setup the given timer
*/
int timer_init(tim_t tim, uint32_t freq, timer_cb_t cb, void *arg)
{
/*
* A debug pin can be used to probe timer interrupts with an oscilloscope or
* other time measurement equipment. Thus, determine when an interrupt occurs
* and how long the timer ISR takes.
* The pin should be defined in the makefile as follows:
* CFLAGS += -DDEBUG_TIMER_PORT=PORTF -DDEBUG_TIMER_DDR=DDRF \
* -DDEBUG_TIMER_PIN=PORTF4
*/
#if defined(DEBUG_TIMER_PORT)
DEBUG_TIMER_DDR |= (1 << DEBUG_TIMER_PIN);
DEBUG_TIMER_PORT &= ~(1 << DEBUG_TIMER_PIN);
DEBUG("Debug Pin: DDR 0x%02x Port 0x%02x Pin 0x%02x\n",
&DEBUG_TIMER_DDR, &DEBUG_TIMER_PORT, (1 << DEBUG_TIMER_PIN));
#endif
DEBUG("timer.c: freq = %ld\n", freq);
uint8_t pre = 0;
/* make sure given device is valid */
if (tim >= TIMER_NUMOF) {
return -1;
}
/* figure out if freq is applicable */
for (; pre < PRESCALE_NUMOF; pre++) {
if ((CLOCK_CORECLOCK >> prescalers[pre]) == freq) {
break;
}
}
if (pre == PRESCALE_NUMOF) {
DEBUG("timer.c: prescaling from %lu Hz failed!\n", CLOCK_CORECLOCK);
return -1;
}
/* stop and reset timer */
ctx[tim].dev->CRA = 0;
ctx[tim].dev->CRB = 0;
#ifdef TCCR1C
ctx[tim].dev->CRC = 0;
#endif
ctx[tim].dev->CNT = 0;
/* save interrupt context and timer mode */
ctx[tim].cb = cb;
ctx[tim].arg = arg;
ctx[tim].mode = (pre + 1);
/* enable timer with calculated prescaler */
ctx[tim].dev->CRB = (pre + 1);
DEBUG("timer.c: prescaler set at %d\n", pre + 1);
return 0;
}
int timer_set_absolute(tim_t tim, int channel, unsigned int value)
{
if (channel >= TIMER_CHANNEL_NUMOF) {
return -1;
}
unsigned state = irq_disable();
ctx[tim].dev->OCR[channel] = (uint16_t)value;
#if defined(OCF1A) && defined(OCF1B) && (OCF1A < OCF1B)
/* clear spurious IRQs, if any */
*ctx[tim].flag = (1 << (OCF1A + channel));
/* unmask IRQ */
*ctx[tim].mask |= (1 << (OCIE1A + channel));
#elif defined(OCF1A) && defined(OCF1B) && (OCF1A > OCF1B)
/* clear spurious IRQs, if any */
*ctx[tim].flag = (1 << (OCF1A - channel));
/* unmask IRQ */
*ctx[tim].mask |= (1 << (OCIE1A - channel));
#endif
set_oneshot(tim, channel);
irq_restore(state);
return 0;
}
int timer_set(tim_t tim, int channel, unsigned int timeout)
{
if (channel >= TIMER_CHANNEL_NUMOF) {
return -1;
}
unsigned state = irq_disable();
unsigned absolute = ctx[tim].dev->CNT + timeout;
ctx[tim].dev->OCR[channel] = absolute;
#if defined(OCF1A) && defined(OCF1B) && (OCF1A < OCF1B)
/* clear spurious IRQs, if any */
*ctx[tim].flag = (1 << (OCF1A + channel));
/* unmask IRQ */
*ctx[tim].mask |= (1 << (OCIE1A + channel));
#elif defined(OCF1A) && defined(OCF1B) && (OCF1A > OCF1B)
/* clear spurious IRQs, if any */
*ctx[tim].flag = (1 << (OCF1A - channel));
/* unmask IRQ */
*ctx[tim].mask |= (1 << (OCIE1A - channel));
#endif
set_oneshot(tim, channel);
if ((absolute - ctx[tim].dev->CNT) > timeout) {
/* Timer already expired. Trigger the interrupt now and loop until it
* is triggered.
*/
#if defined(OCF1A) && defined(OCF1B) && (OCF1A < OCF1B)
while (!(*ctx[tim].flag & (1 << (OCF1A + channel)))) {
#elif defined(OCF1A) && defined(OCF1B) && (OCF1A > OCF1B)
while (!(*ctx[tim].flag & (1 << (OCF1A - channel)))) {
#endif
ctx[tim].dev->OCR[channel] = ctx[tim].dev->CNT;
}
}
irq_restore(state);
return 0;
}
int timer_set_periodic(tim_t tim, int channel, unsigned int value, uint8_t flags)
{
int res = 0;
if (channel >= TIMER_CHANNEL_NUMOF) {
return -1;
}
if (flags & TIM_FLAG_RESET_ON_SET) {
ctx[tim].dev->CNT = 0;
}
unsigned state = irq_disable();
ctx[tim].dev->OCR[channel] = (uint16_t)value;
#if defined(OCF1A) && defined(OCF1B) && (OCF1A < OCF1B)
/* clear spurious IRQs, if any */
*ctx[tim].flag = (1 << (OCF1A + channel));
/* unmask IRQ */
*ctx[tim].mask |= (1 << (OCIE1A + channel));
#elif defined(OCF1A) && defined(OCF1B) && (OCF1A > OCF1B)
/* clear spurious IRQs, if any */
*ctx[tim].flag = (1 << (OCF1A - channel));
/* unmask IRQ */
*ctx[tim].mask |= (1 << (OCIE1A - channel));
#endif
clear_oneshot(tim, channel);
/* only OCR0 can be use to set TOP */
if (channel == 0) {
if (flags & TIM_FLAG_RESET_ON_MATCH) {
/* enable CTC mode */
ctx[tim].mode |= (1 << 3);
} else {
/* disable CTC mode */
ctx[tim].mode &= (1 << 3);
}
/* enable timer or stop it */
if (flags & TIM_FLAG_SET_STOPPED) {
ctx[tim].dev->CRB = 0;
} else {
ctx[tim].dev->CRB = ctx[tim].mode;
}
} else {
assert((flags & TIM_FLAG_RESET_ON_MATCH) == 0);
res = -1;
}
irq_restore(state);
return res;
}
int timer_clear(tim_t tim, int channel)
{
if (channel >= TIMER_CHANNEL_NUMOF) {
return -1;
}
#if defined(OCIE1A) && defined(OCIE1B) && (OCIE1A < OCIE1B)
*ctx[tim].mask &= ~(1 << (OCIE1A + channel));
#elif defined(OCIE1A) && defined(OCIE1B) && (OCIE1A > OCIE1B)
*ctx[tim].mask &= ~(1 << (OCIE1A - channel));
#endif
return 0;
}
unsigned int timer_read(tim_t tim)
{
/* CNT is a 16 bit register, but atomic access is implemented by hardware:
* A read from the low byte causes the value in the high byte being stored
* in parallel into a temporary register. The read of the high byte will
* instead access the temporary register. However, the AVR only has one
* temporary register that is used to implement atomic access to all 16 bit
* registers. Thus, access has to be guarded by disabling IRQs.
*/
unsigned state = irq_disable();
unsigned result = ctx[tim].dev->CNT;
irq_restore(state);
return result;
}
void timer_stop(tim_t tim)
{
ctx[tim].dev->CRB = 0;
}
void timer_start(tim_t tim)
{
ctx[tim].dev->CRB = ctx[tim].mode;
}
#ifdef TIMER_NUMOF
static inline void _isr(tim_t tim, int chan)
{
#if defined(DEBUG_TIMER_PORT)
DEBUG_TIMER_PORT |= (1 << DEBUG_TIMER_PIN);
#endif
if (is_oneshot(tim, chan)) {
timer_clear(tim, chan);
}
ctx[tim].cb(ctx[tim].arg, chan);
#if defined(DEBUG_TIMER_PORT)
DEBUG_TIMER_PORT &= ~(1 << DEBUG_TIMER_PIN);
#endif
}
#endif
#ifdef TIMER_0
AVR8_ISR(TIMER_0_ISRA, _isr, 0, 0);
AVR8_ISR(TIMER_0_ISRB, _isr, 0, 1);
#ifdef TIMER_0_ISRC
AVR8_ISR(TIMER_0_ISRC, _isr, 0, 2);
#endif /* TIMER_0_ISRC */
#endif /* TIMER_0 */
#ifdef TIMER_1
AVR8_ISR(TIMER_1_ISRA, _isr, 1, 0);
AVR8_ISR(TIMER_1_ISRB, _isr, 1, 1);
#ifdef TIMER_1_ISRC
AVR8_ISR(TIMER_1_ISRC, _isr, 1, 2);
#endif /* TIMER_0_ISRC */
#endif /* TIMER_1 */
#ifdef TIMER_2
AVR8_ISR(TIMER_2_ISRA, _isr, 2, 0);
AVR8_ISR(TIMER_2_ISRB, _isr, 2, 1);
AVR8_ISR(TIMER_2_ISRC, _isr, 2, 2);
#endif /* TIMER_2 */
#ifdef TIMER_3
AVR8_ISR(TIMER_3_ISRA, _isr, 3, 0);
AVR8_ISR(TIMER_3_ISRB, _isr, 3, 1);
AVR8_ISR(TIMER_3_ISRC, _isr, 3, 2);
#endif /* TIMER_3 */