1
0
mirror of https://github.com/RIOT-OS/RIOT.git synced 2025-01-18 12:52:44 +01:00
RIOT/cpu/nrf51822/periph/uart.c

245 lines
6.4 KiB
C

/*
* Copyright (C) 2014 Freie Universität Berlin
*
* This file is subject to the terms and conditions of the GNU Lesser General
* Public License v2.1. See the file LICENSE in the top level directory for more
* details.
*/
/**
* @ingroup cpu_nrf51822
* @{
*
* @file
* @brief Low-level UART driver implementation
*
* @author Christian Kühling <kuehling@zedat.fu-berlin.de>
* @author Timo Ziegler <timo.ziegler@fu-berlin.de>
* @author Hauke Petersen <hauke.petersen@fu-berlin.de>
*
* @}
*/
#include <stdint.h>
#include "cpu.h"
#include "thread.h"
#include "sched.h"
#include "periph_conf.h"
#include "periph/uart.h"
#include "board.h"
/* guard file in case no UART device was specified */
#if UART_0_EN
/**
* @brief Each UART device has to store two callbacks.
*/
typedef struct {
uart_rx_cb_t rx_cb;
uart_tx_cb_t tx_cb;
void *arg;
} uart_conf_t;
/**
* @brief Data structure holding the callbacks and argument for each UART device
*/
static uart_conf_t uart_config;
/**
* @brief Allocate memory to store the callback functions.
*/
int uart_init(uart_t uart, uint32_t baudrate, uart_rx_cb_t rx_cb, uart_tx_cb_t tx_cb, void *arg)
{
int res;
/* initialize UART in blocking mode fist */
res = uart_init_blocking(uart, baudrate);
if (res != 0) {
return res;
}
/* remember callback addresses and argument */
uart_config.rx_cb = rx_cb;
uart_config.tx_cb = tx_cb;
uart_config.arg = arg;
/* enable global and receiving interrupt */
NVIC_SetPriority(UART0_IRQn, UART_IRQ_PRIO);
NVIC_EnableIRQ(UART0_IRQn);
NRF_UART0->INTENSET = UART_INTENSET_RXDRDY_Msk;
return 0;
}
int uart_init_blocking(uart_t uart, uint32_t baudrate)
{
/* the NRF only supports 1 UART device, so we don't need a switch statement here */
if (uart != UART_0) {
return -1;
}
/* power on the UART device */
NRF_UART0->POWER = 1;
/* reset configuration registers */
NRF_UART0->CONFIG = 0;
/* configure RX/TX pin modes */
NRF_GPIO->DIRSET = (1 << UART_PIN_TX);
NRF_GPIO->DIRCLR = (1 << UART_PIN_RX);
/* configure UART pins to use */
NRF_UART0->PSELTXD = UART_PIN_TX;
NRF_UART0->PSELRXD = UART_PIN_RX;
/* enable HW-flow control if defined */
#if UART_HWFLOWCTRL
/* set pin mode for RTS and CTS pins */
NRF_GPIO->DIRSET = (1 << UART_PIN_RTS);
NRF_GPIO->DIRSET = (1 << UART_PIN_CTS);
/* configure RTS and CTS pins to use */
NRF_UART0->PSELRTS = UART_PIN_RTS;
NRF_UART0->PSELCTS = UART_PIN_CTS;
NRF_UART0->CONFIG |= UART_CONFIG_HWFC_Msk; /* enable HW flow control */
#else
NRF_UART0->PSELRTS = 0xffffffff; /* pin disconnected */
NRF_UART0->PSELCTS = 0xffffffff; /* pin disconnected */
#endif
/* select baudrate */
switch (baudrate) {
case 1200:
NRF_UART0->BAUDRATE = UART_BAUDRATE_BAUDRATE_Baud1200;
break;
case 2400:
NRF_UART0->BAUDRATE = UART_BAUDRATE_BAUDRATE_Baud2400;
break;
case 4800:
NRF_UART0->BAUDRATE = UART_BAUDRATE_BAUDRATE_Baud4800;
break;
case 9600:
NRF_UART0->BAUDRATE = UART_BAUDRATE_BAUDRATE_Baud9600;
break;
case 14400:
NRF_UART0->BAUDRATE = UART_BAUDRATE_BAUDRATE_Baud14400;
break;
case 19200:
NRF_UART0->BAUDRATE = UART_BAUDRATE_BAUDRATE_Baud19200;
break;
case 28800:
NRF_UART0->BAUDRATE = UART_BAUDRATE_BAUDRATE_Baud28800;
break;
case 38400:
NRF_UART0->BAUDRATE = UART_BAUDRATE_BAUDRATE_Baud38400;
break;
case 57600:
NRF_UART0->BAUDRATE = UART_BAUDRATE_BAUDRATE_Baud57600;
break;
case 76800:
NRF_UART0->BAUDRATE = UART_BAUDRATE_BAUDRATE_Baud76800;
break;
case 115200:
NRF_UART0->BAUDRATE = UART_BAUDRATE_BAUDRATE_Baud115200;
break;
case 230400:
NRF_UART0->BAUDRATE = UART_BAUDRATE_BAUDRATE_Baud230400;
break;
case 250000:
NRF_UART0->BAUDRATE = UART_BAUDRATE_BAUDRATE_Baud250000;
break;
case 460800:
NRF_UART0->BAUDRATE = UART_BAUDRATE_BAUDRATE_Baud460800;
break;
case 921600:
NRF_UART0->BAUDRATE = UART_BAUDRATE_BAUDRATE_Baud921600;
break;
default:
return -1;
}
/* enable the UART device */
NRF_UART0->ENABLE = UART_ENABLE_ENABLE_Enabled;
/* enable TX and RX */
NRF_UART0->TASKS_STARTTX = 1;
NRF_UART0->TASKS_STARTRX = 1;
return 0;
}
void uart_tx_begin(uart_t uart)
{
if (uart == UART_0) {
if (uart_config.tx_cb(uart_config.arg) != 0) {
NRF_UART0->INTENSET = UART_INTENSET_TXDRDY_Msk;
}
}
}
int uart_write(uart_t uart, char data)
{
if (uart == UART_0) {
NRF_UART0->TXD = (uint8_t)data;
NRF_UART0->EVENTS_TXDRDY = 0;
return 1;
}
return 0;
}
int uart_read_blocking(uart_t uart, char *data)
{
if (uart == UART_0) {
/* wait for until data was received (RXDRDY == 1) */
while (NRF_UART0->EVENTS_RXDRDY != 1);
/* reset RXDRDY flag */
NRF_UART0->EVENTS_RXDRDY = 0;
/* read new byte from receive data register */
*data = (char)(NRF_UART0->RXD & 0xff);
return 1;
}
return 0;
}
int uart_write_blocking(uart_t uart, char data)
{
if (uart == UART_0) {
/* write data into transmit register */
NRF_UART0->TXD = (uint8_t)data;
/* wait for any transmission to be done */
while (NRF_UART0->EVENTS_TXDRDY == 0);
/* reset ready flag */
NRF_UART0->EVENTS_TXDRDY = 0;
return 1;
}
return 0;
}
void uart_poweron(uart_t uart)
{
if (uart == UART_0) {
NRF_UART0->POWER = 1;
}
}
void uart_poweroff(uart_t uart)
{
if (uart == UART_0) {
NRF_UART0->POWER = 0;
}
}
void isr_uart0(void)
{
if (NRF_UART0->EVENTS_RXDRDY == 1) {
NRF_UART0->EVENTS_RXDRDY = 0;
char byte = (char)(NRF_UART0->RXD & 0xff);
uart_config.rx_cb(uart_config.arg, byte);
}
if (NRF_UART0->EVENTS_TXDRDY == 1) {
NRF_UART0->EVENTS_TXDRDY = 0;
if (uart_config.tx_cb(uart_config.arg) == 0) {
NRF_UART0->INTENCLR = UART_INTENSET_TXDRDY_Msk;
}
}
if (sched_context_switch_request) {
thread_yield();
}
}
#endif /* UART_0_EN */