1
0
mirror of https://github.com/RIOT-OS/RIOT.git synced 2025-01-18 00:52:43 +01:00
RIOT/cpu/gd32v/periph/rtc.c
2023-01-22 17:53:44 +01:00

297 lines
7.0 KiB
C

/*
* Copyright (C) 2019 Alexei Bezborodov
* 2023 Gunar Schorcht
*
* This file is subject to the terms and conditions of the GNU Lesser
* General Public License v2.1. See the file LICENSE in the top level
* directory for more details.
*/
/**
* @ingroup cpu_gd32v
* @{
* @file
* @brief Low-level RTC driver implementation for GD32VF103
*
* This driver is a modified copy of the RTC driver for the STM32F1 family.
*
* @author Alexei Bezborodov <alexeibv+riotos@narod.ru>
* @author Gunar Schorcht <gunar@schorcht.net>
* @}
*/
#include <time.h>
#include "cpu.h"
#include "periph/rtc.h"
#define ENABLE_DEBUG 0
#include "debug.h"
#define EXTI_RTC_BIT (1UL << 17)
static struct {
rtc_alarm_cb_t cb; /**< callback called from RTC interrupt */
void *arg; /**< argument passed to the callback */
} isr_ctx;
/* forward declaration of ISR */
static void isr_rtc_alarm(unsigned irqn);
static void _rtc_enter_config_mode(void)
{
/* enable write access to backup domain registers */
PMU->CTL |= PMU_CTL_BKPWEN_Msk;
/* wait until the LWOFF bit is 1 (Last write operation finished). */
while ((RTC->CTL & RTC_CTL_LWOFF_Msk) == 0) { }
/* enter configuration mode. */
RTC->CTL |= RTC_CTL_CMF_Msk;
}
static void _rtc_exit_config_mode(void)
{
/* exit configuration mode. */
RTC->CTL &= ~RTC_CTL_CMF_Msk;
/* wait until the LWOFF bit is 1 (Last write operation finished). */
while ((RTC->CTL & RTC_CTL_LWOFF_Msk) == 0) { }
/* disable write access to backup domain registers */
PMU->CTL &= ~PMU_CTL_BKPWEN_Msk;
}
static bool _is_rtc_enable(void)
{
return ((RCU->BDCTL & RCU_BDCTL_RTCEN_Msk) == RCU_BDCTL_RTCEN_Msk);
}
#define RCU_BDCTL_RTCSRC_CK_LXTAL 1
#define RCU_BDCTL_RTCSRC_CK_IRC40K 2
static void _rtc_config(void)
{
DEBUG("[RTC] config\n");
/* enable APB1 clocks */
RCU->APB1EN |= RCU_APB1EN_PMUEN_Msk | RCU_APB1EN_BKPIEN_Msk;
/* enable write access to backup domain registers */
PMU->CTL |= PMU_CTL_BKPWEN_Msk;
/* resets the entire backup domain */
RCU->BDCTL |= RCU_BDCTL_BKPRST_Msk;
/* reset not activated */
RCU->BDCTL &= ~RCU_BDCTL_BKPRST_Msk;
#if CONFIG_BOARD_HAS_LXTAL
/* oscillator clock used as RTC clock */
RCU->BDCTL |= RCU_BDCTL_RTCSRC_CK_LXTAL << RCU_BDCTL_RTCSRC_Pos;
RCU->BDCTL |= RCU_BDCTL_LXTALEN_Msk;
while ((RCU->BDCTL & RCU_BDCTL_LXTALSTB_Msk) != RCU_BDCTL_LXTALSTB_Msk) { }
#else
RCU->BDCTL |= RCU_BDCTL_RTCSRC_CK_IRC40K << RCU_BDCTL_RTCSRC_Pos;
#endif
/* enable RTC clock */
RCU->BDCTL |= RCU_BDCTL_RTCEN_Msk;
/* calibration clock from 0 to 0x7F */
BKP->OCTL |= 0;
BKP->OCTL |= BKP_OCTL_ASOEN_Msk;
/* second interrupt is disabled. */
RTC->INTEN &= ~RTC_INTEN_SCIE_Msk;
_rtc_enter_config_mode();
#if CONFIG_BOARD_HAS_LXTAL
/* if the input clock frequency (fRTCCLK) is 32.768 kHz, write 7FFFh in
* this register to get a signal period of 1 second. */
RTC->PSCH = 0;
RTC->PSCL = 0x7FFF;
#else
/* if the input clock frequency (fRTCCLK) is 40 kHz, write 39999 in
* this register to get a signal period of 1 second. */
RTC->PSCH = 0;
RTC->PSCL = 39999;
#endif
_rtc_exit_config_mode();
/* wait registers synchronize flag */
RTC->CTL &= (uint16_t)~RTC_CTL_RSYNF_Msk;
while ((RTC->CTL & RTC_CTL_RSYNF_Msk) != RTC_CTL_RSYNF_Msk) { }
/* disable write access to backup domain registers */
PMU->CTL &= ~PMU_CTL_BKPWEN_Msk;
/* configure the EXTI channel, as RTC interrupts are routed through it.
* Needs to be configured to trigger on rising edges. */
EXTI->FTEN &= ~(EXTI_RTC_BIT);
EXTI->RTEN |= EXTI_RTC_BIT;
EXTI->INTEN |= EXTI_RTC_BIT;
EXTI->PD |= EXTI_RTC_BIT;
/* enable global RTC interrupt */
clic_set_handler(RTC_ALARM_IRQn, isr_rtc_alarm);
clic_enable_interrupt(RTC_ALARM_IRQn, CPU_DEFAULT_IRQ_PRIO);
}
static uint32_t _rtc_get_time(void)
{
return (RTC->CNTH << 16) | RTC->CNTL;
}
static void _rtc_set_time(uint32_t counter_val)
{
_rtc_enter_config_mode();
RTC->CNTH = (counter_val & 0xffff0000) >> 16;
RTC->CNTL = counter_val & 0x0000ffff;
_rtc_exit_config_mode();
}
void rtc_init(void)
{
/* save current time if RTC already works */
bool is_rtc_enable = _is_rtc_enable();
uint32_t cur_time = 0;
if (is_rtc_enable) {
cur_time = _rtc_get_time();
}
/* config RTC */
_rtc_config();
/* restore current time after config */
if (is_rtc_enable) {
_rtc_set_time(cur_time);
}
}
int rtc_set_time(struct tm *time)
{
rtc_tm_normalize(time);
uint32_t timestamp = rtc_mktime(time);
_rtc_set_time(timestamp);
DEBUG("%s timestamp=%"PRIu32"\n", __func__, timestamp);
return 0;
}
int rtc_get_time(struct tm *time)
{
uint32_t timestamp = _rtc_get_time();
rtc_localtime(timestamp, time);
DEBUG("%s timestamp=%"PRIu32"\n", __func__, timestamp);
return 0;
}
static void _rtc_enable_alarm(void)
{
/* clear alarm flag */
RTC->CTL &= ~RTC_CTL_ALRMIF_Msk;
_rtc_enter_config_mode();
RTC->INTEN |= (RTC_INTEN_ALRMIE_Msk);
_rtc_exit_config_mode();
}
static void _rtc_disable_alarm(void)
{
_rtc_enter_config_mode();
RTC->INTEN &= ~RTC_INTEN_ALRMIE_Msk;
_rtc_exit_config_mode();
}
/* RTC->ALRMH and RTC->ALRML are writable only. Therefore the current alarm
* time must be stored separately in a variable for _rtc_get_alarm_time. */
static uint32_t _rtc_alarm_time = 0;
static uint32_t _rtc_get_alarm_time(void)
{
return _rtc_alarm_time;
}
static void _rtc_set_alarm_time(uint32_t alarm_time)
{
/* save the current alarm time */
_rtc_alarm_time = alarm_time;
/* set RTC alarm registers */
_rtc_enter_config_mode();
RTC->ALRML = (alarm_time & 0x0000ffff);
RTC->ALRMH = (alarm_time & 0xffff0000) >> 16;
_rtc_exit_config_mode();
}
int rtc_set_alarm(struct tm *time, rtc_alarm_cb_t cb, void *arg)
{
rtc_tm_normalize(time);
uint32_t timestamp = rtc_mktime(time);
/* disable existing alarm (if enabled) */
rtc_clear_alarm();
/* save callback and argument */
isr_ctx.cb = cb;
isr_ctx.arg = arg;
/* set wakeup time */
_rtc_set_alarm_time(timestamp);
/* enable Alarm */
_rtc_enable_alarm();
DEBUG("%s timestamp=%"PRIu32"\n", __func__, timestamp);
return 0;
}
int rtc_get_alarm(struct tm *time)
{
uint32_t timestamp = _rtc_get_alarm_time();
rtc_localtime(timestamp, time);
DEBUG("%s timestamp=%"PRIu32"\n", __func__, timestamp);
return 0;
}
void rtc_clear_alarm(void)
{
_rtc_disable_alarm();
isr_ctx.cb = NULL;
isr_ctx.arg = NULL;
}
void rtc_poweron(void)
{
/* RTC is always on */
return;
}
void rtc_poweroff(void)
{
/* RTC is always on */
return;
}
static void isr_rtc_alarm(unsigned irqn)
{
(void)irqn;
if (RTC->CTL & RTC_CTL_ALRMIF_Msk) {
if (isr_ctx.cb != NULL) {
isr_ctx.cb(isr_ctx.arg);
}
RTC->CTL &= ~RTC_CTL_ALRMIF_Msk;
}
EXTI->PD |= EXTI_RTC_BIT;
}