1
0
mirror of https://github.com/RIOT-OS/RIOT.git synced 2025-01-18 12:52:44 +01:00
RIOT/cpu/stm32f2/periph/uart.c
Hermann Lelong 182be862bb stm32f2: Improve UART driver
Add missing DMA interrupts for UART
Improve baudrate intialization:
 - Return error if baudrate is theorically unreachable
 - Implement oversampling by 8 method for high baudrates
Add UART hardware flow control support
Ensure uart tx thread safety with a mutex
Allow setting of pins mode per UART
2016-04-01 16:38:49 +02:00

294 lines
6.9 KiB
C

/*
* Copyright (C) 2014-2015 Freie Universität Berlin
* Copyright (C) 2016 OTA keys
*
* This file is subject to the terms and conditions of the GNU Lesser
* General Public License v2.1. See the file LICENSE in the top level
* directory for more details.
*/
/**
* @ingroup cpu_stm32f2
* @{
*
* @file
* @brief Low-level UART driver implementation
*
* @author Hauke Petersen <hauke.petersen@fu-berlin.de>
* @author Fabian Nack <nack@inf.fu-berlin.de>
* @author Hermann Lelong <hermann@otakeys.com>
* @author Toon Stegen <toon.stegen@altran.com>
*
* @}
*/
#include "cpu.h"
#include "thread.h"
#include "sched.h"
#include "mutex.h"
#include "periph/uart.h"
#include "periph/gpio.h"
#define ENABLE_DEBUG (0)
#include "debug.h"
/**
* @brief Allocate memory to store the callback functions
*/
static uart_isr_ctx_t uart_ctx[UART_NUMOF];
/**
* @brief Get the base register for the given UART device
*/
static inline USART_TypeDef *_dev(uart_t uart)
{
return uart_config[uart].dev;
}
/**
* @brief Transmission locks
*/
static mutex_t tx_sync[UART_NUMOF];
static mutex_t tx_lock[UART_NUMOF];
/**
* @brief Find out which peripheral bus the UART device is connected to
*
* @return 1: APB1
* @return 2: APB2
*/
static inline int _bus(uart_t uart)
{
return (uart_config[uart].rcc_mask < RCC_APB1ENR_USART2EN) ? 2 : 1;
}
int uart_init(uart_t uart, uint32_t baudrate, uart_rx_cb_t rx_cb, void *arg)
{
USART_TypeDef *dev;
DMA_Stream_TypeDef *stream;
float divider;
uint16_t mantissa;
uint8_t fraction;
uint32_t max_clock;
uint8_t over8;
/* check if given UART device does exist */
if (uart < 0 || uart >= UART_NUMOF) {
return -1;
}
/* check if baudrate is reachable and choose the right oversampling method*/
max_clock = (_bus(uart) == 1) ? CLOCK_APB1 : CLOCK_APB2;
if (baudrate < (max_clock / 16)) {
over8 = 0;
}
else if (baudrate < (max_clock / 8)) {
over8 = 1;
}
else {
return -2;
}
/* get UART base address */
dev = _dev(uart);
/* remember callback addresses and argument */
uart_ctx[uart].rx_cb = rx_cb;
uart_ctx[uart].arg = arg;
/* init tx lock */
mutex_init(&tx_sync[uart]);
mutex_lock(&tx_sync[uart]);
mutex_init(&tx_lock[uart]);
/* configure pins */
gpio_init(uart_config[uart].rx_pin, uart_config[uart].rx_mode);
gpio_init(uart_config[uart].tx_pin, uart_config[uart].tx_mode);
gpio_init_af(uart_config[uart].rx_pin, uart_config[uart].af);
gpio_init_af(uart_config[uart].tx_pin, uart_config[uart].af);
/* enable UART clock */
uart_poweron(uart);
/* calculate and set baudrate */
divider = max_clock / (8 * (2 - over8) * baudrate);
mantissa = (uint16_t)divider;
fraction = (uint8_t)((divider - mantissa) * (8 * (2 - over8)));
dev->BRR = ((mantissa & 0x0fff) << 4) | (0x07 & fraction);
/* configure UART to 8N1 and enable receive and transmit mode*/
dev->CR1 = USART_CR1_UE | USART_CR1_TE | USART_CR1_RE;
if (over8) {
dev->CR1 |= USART_CR1_OVER8;
}
dev->CR3 = USART_CR3_DMAT;
dev->CR2 = 0;
if(uart_config[uart].hw_flow_ctrl) {
gpio_init(uart_config[uart].cts_pin, uart_config[uart].cts_mode);
gpio_init(uart_config[uart].rts_pin, uart_config[uart].rts_mode);
gpio_init_af(uart_config[uart].cts_pin, uart_config[uart].af);
gpio_init_af(uart_config[uart].rts_pin, uart_config[uart].af);
DEBUG("Init flow control on uart %u\n", uart);
/* configure hardware flow control */
dev->CR3 |= USART_CR3_RTSE | USART_CR3_CTSE;
}
/* configure the DMA stream for transmission */
dma_poweron(uart_config[uart].dma_stream);
stream = dma_stream(uart_config[uart].dma_stream);
stream->CR = ((uart_config[uart].dma_chan << 25) |
DMA_SxCR_PL_0 |
DMA_SxCR_MINC |
DMA_SxCR_DIR_0 |
DMA_SxCR_TCIE);
stream->PAR = (uint32_t)&(dev->DR);
stream->FCR = 0;
/* enable global and receive interrupts */
NVIC_EnableIRQ(uart_config[uart].irqn);
dma_isr_enable(uart_config[uart].dma_stream);
dev->CR1 |= USART_CR1_RXNEIE;
return 0;
}
void uart_write(uart_t uart, const uint8_t *data, size_t len)
{
/* in case we are inside an ISR, we need to send blocking */
if (irq_is_in()) {
/* send data by active waiting on the TXE flag */
USART_TypeDef *dev = _dev(uart);
for (int i = 0; i < len; i++) {
while (!(dev->SR & USART_SR_TXE));
dev->DR = data[i];
}
}
else {
mutex_lock(&tx_lock[uart]);
DMA_Stream_TypeDef *stream = dma_stream(uart_config[uart].dma_stream);
/* configure and start DMA transfer */
stream->M0AR = (uint32_t)data;
stream->NDTR = (uint16_t)len;
stream->CR |= DMA_SxCR_EN;
/* wait for transfer to complete */
mutex_lock(&tx_sync[uart]);
mutex_unlock(&tx_lock[uart]);
}
}
void uart_poweron(uart_t uart)
{
if (_bus(uart) == 1) {
RCC->APB1ENR |= uart_config[uart].rcc_mask;
}
else {
RCC->APB2ENR |= uart_config[uart].rcc_mask;
}
}
void uart_poweroff(uart_t uart)
{
if (_bus(uart) == 1) {
RCC->APB1ENR &= ~(uart_config[uart].rcc_mask);
}
else {
RCC->APB2ENR &= ~(uart_config[uart].rcc_mask);
}
}
static inline void irq_handler(int uart, USART_TypeDef *dev)
{
if (dev->SR & USART_SR_RXNE) {
char data = (char)dev->DR;
uart_ctx[uart].rx_cb(uart_ctx[uart].arg, data);
}
if (sched_context_switch_request) {
thread_yield();
}
}
static inline void dma_handler(int uart, int stream)
{
/* clear DMA done flag */
if (stream < 4) {
dma_base(stream)->LIFCR = dma_ifc(stream);
}
else {
dma_base(stream)->HIFCR = dma_ifc(stream);
}
mutex_unlock(&tx_sync[uart]);
if (sched_context_switch_request) {
thread_yield();
}
}
#ifdef UART_0_ISR
void UART_0_ISR(void)
{
irq_handler(0, uart_config[0].dev);
}
void UART_0_DMA_ISR(void)
{
dma_handler(0, uart_config[0].dma_stream);
}
#endif
#ifdef UART_1_ISR
void UART_1_ISR(void)
{
irq_handler(1, uart_config[1].dev);
}
void UART_1_DMA_ISR(void)
{
dma_handler(1, uart_config[1].dma_stream);
}
#endif
#ifdef UART_2_ISR
void UART_2_ISR(void)
{
irq_handler(2, uart_config[2].dev);
}
void UART_2_DMA_ISR(void)
{
dma_handler(2, uart_config[2].dma_stream);
}
#endif
#ifdef UART_3_ISR
void UART_3_ISR(void)
{
irq_handler(3, uart_config[3].dev);
}
void UART_3_DMA_ISR(void)
{
dma_handler(3, uart_config[3].dma_stream);
}
#endif
#ifdef UART_4_ISR
void UART_4_ISR(void)
{
irq_handler(4, uart_config[4].dev);
}
void UART_4_DMA_ISR(void)
{
dma_handler(4, uart_config[4].dma_stream);
}
#endif
#ifdef UART_5_ISR
void UART_5_ISR(void)
{
irq_handler(5, uart_config[5].dev);
}
void UART_5_DMA_ISR(void)
{
dma_handler(5, uart_config[5].dma_stream);
}
#endif