mirror of
https://github.com/RIOT-OS/RIOT.git
synced 2025-01-18 12:52:44 +01:00
182be862bb
Add missing DMA interrupts for UART Improve baudrate intialization: - Return error if baudrate is theorically unreachable - Implement oversampling by 8 method for high baudrates Add UART hardware flow control support Ensure uart tx thread safety with a mutex Allow setting of pins mode per UART
294 lines
6.9 KiB
C
294 lines
6.9 KiB
C
/*
|
|
* Copyright (C) 2014-2015 Freie Universität Berlin
|
|
* Copyright (C) 2016 OTA keys
|
|
*
|
|
* This file is subject to the terms and conditions of the GNU Lesser
|
|
* General Public License v2.1. See the file LICENSE in the top level
|
|
* directory for more details.
|
|
*/
|
|
|
|
/**
|
|
* @ingroup cpu_stm32f2
|
|
* @{
|
|
*
|
|
* @file
|
|
* @brief Low-level UART driver implementation
|
|
*
|
|
* @author Hauke Petersen <hauke.petersen@fu-berlin.de>
|
|
* @author Fabian Nack <nack@inf.fu-berlin.de>
|
|
* @author Hermann Lelong <hermann@otakeys.com>
|
|
* @author Toon Stegen <toon.stegen@altran.com>
|
|
*
|
|
* @}
|
|
*/
|
|
|
|
#include "cpu.h"
|
|
#include "thread.h"
|
|
#include "sched.h"
|
|
#include "mutex.h"
|
|
#include "periph/uart.h"
|
|
#include "periph/gpio.h"
|
|
|
|
#define ENABLE_DEBUG (0)
|
|
#include "debug.h"
|
|
|
|
/**
|
|
* @brief Allocate memory to store the callback functions
|
|
*/
|
|
static uart_isr_ctx_t uart_ctx[UART_NUMOF];
|
|
|
|
/**
|
|
* @brief Get the base register for the given UART device
|
|
*/
|
|
static inline USART_TypeDef *_dev(uart_t uart)
|
|
{
|
|
return uart_config[uart].dev;
|
|
}
|
|
|
|
/**
|
|
* @brief Transmission locks
|
|
*/
|
|
static mutex_t tx_sync[UART_NUMOF];
|
|
|
|
static mutex_t tx_lock[UART_NUMOF];
|
|
|
|
/**
|
|
* @brief Find out which peripheral bus the UART device is connected to
|
|
*
|
|
* @return 1: APB1
|
|
* @return 2: APB2
|
|
*/
|
|
static inline int _bus(uart_t uart)
|
|
{
|
|
return (uart_config[uart].rcc_mask < RCC_APB1ENR_USART2EN) ? 2 : 1;
|
|
}
|
|
|
|
int uart_init(uart_t uart, uint32_t baudrate, uart_rx_cb_t rx_cb, void *arg)
|
|
{
|
|
USART_TypeDef *dev;
|
|
DMA_Stream_TypeDef *stream;
|
|
float divider;
|
|
uint16_t mantissa;
|
|
uint8_t fraction;
|
|
uint32_t max_clock;
|
|
uint8_t over8;
|
|
|
|
/* check if given UART device does exist */
|
|
if (uart < 0 || uart >= UART_NUMOF) {
|
|
return -1;
|
|
}
|
|
|
|
/* check if baudrate is reachable and choose the right oversampling method*/
|
|
max_clock = (_bus(uart) == 1) ? CLOCK_APB1 : CLOCK_APB2;
|
|
|
|
if (baudrate < (max_clock / 16)) {
|
|
over8 = 0;
|
|
}
|
|
else if (baudrate < (max_clock / 8)) {
|
|
over8 = 1;
|
|
}
|
|
else {
|
|
return -2;
|
|
}
|
|
|
|
/* get UART base address */
|
|
dev = _dev(uart);
|
|
/* remember callback addresses and argument */
|
|
uart_ctx[uart].rx_cb = rx_cb;
|
|
uart_ctx[uart].arg = arg;
|
|
/* init tx lock */
|
|
mutex_init(&tx_sync[uart]);
|
|
mutex_lock(&tx_sync[uart]);
|
|
mutex_init(&tx_lock[uart]);
|
|
|
|
/* configure pins */
|
|
gpio_init(uart_config[uart].rx_pin, uart_config[uart].rx_mode);
|
|
gpio_init(uart_config[uart].tx_pin, uart_config[uart].tx_mode);
|
|
gpio_init_af(uart_config[uart].rx_pin, uart_config[uart].af);
|
|
gpio_init_af(uart_config[uart].tx_pin, uart_config[uart].af);
|
|
/* enable UART clock */
|
|
uart_poweron(uart);
|
|
|
|
/* calculate and set baudrate */
|
|
divider = max_clock / (8 * (2 - over8) * baudrate);
|
|
|
|
mantissa = (uint16_t)divider;
|
|
fraction = (uint8_t)((divider - mantissa) * (8 * (2 - over8)));
|
|
dev->BRR = ((mantissa & 0x0fff) << 4) | (0x07 & fraction);
|
|
/* configure UART to 8N1 and enable receive and transmit mode*/
|
|
dev->CR1 = USART_CR1_UE | USART_CR1_TE | USART_CR1_RE;
|
|
if (over8) {
|
|
dev->CR1 |= USART_CR1_OVER8;
|
|
}
|
|
dev->CR3 = USART_CR3_DMAT;
|
|
dev->CR2 = 0;
|
|
|
|
if(uart_config[uart].hw_flow_ctrl) {
|
|
gpio_init(uart_config[uart].cts_pin, uart_config[uart].cts_mode);
|
|
gpio_init(uart_config[uart].rts_pin, uart_config[uart].rts_mode);
|
|
gpio_init_af(uart_config[uart].cts_pin, uart_config[uart].af);
|
|
gpio_init_af(uart_config[uart].rts_pin, uart_config[uart].af);
|
|
DEBUG("Init flow control on uart %u\n", uart);
|
|
/* configure hardware flow control */
|
|
dev->CR3 |= USART_CR3_RTSE | USART_CR3_CTSE;
|
|
}
|
|
|
|
/* configure the DMA stream for transmission */
|
|
dma_poweron(uart_config[uart].dma_stream);
|
|
stream = dma_stream(uart_config[uart].dma_stream);
|
|
stream->CR = ((uart_config[uart].dma_chan << 25) |
|
|
DMA_SxCR_PL_0 |
|
|
DMA_SxCR_MINC |
|
|
DMA_SxCR_DIR_0 |
|
|
DMA_SxCR_TCIE);
|
|
stream->PAR = (uint32_t)&(dev->DR);
|
|
stream->FCR = 0;
|
|
/* enable global and receive interrupts */
|
|
NVIC_EnableIRQ(uart_config[uart].irqn);
|
|
dma_isr_enable(uart_config[uart].dma_stream);
|
|
dev->CR1 |= USART_CR1_RXNEIE;
|
|
return 0;
|
|
}
|
|
|
|
void uart_write(uart_t uart, const uint8_t *data, size_t len)
|
|
{
|
|
/* in case we are inside an ISR, we need to send blocking */
|
|
if (irq_is_in()) {
|
|
/* send data by active waiting on the TXE flag */
|
|
USART_TypeDef *dev = _dev(uart);
|
|
for (int i = 0; i < len; i++) {
|
|
while (!(dev->SR & USART_SR_TXE));
|
|
dev->DR = data[i];
|
|
}
|
|
}
|
|
else {
|
|
mutex_lock(&tx_lock[uart]);
|
|
DMA_Stream_TypeDef *stream = dma_stream(uart_config[uart].dma_stream);
|
|
/* configure and start DMA transfer */
|
|
stream->M0AR = (uint32_t)data;
|
|
stream->NDTR = (uint16_t)len;
|
|
stream->CR |= DMA_SxCR_EN;
|
|
/* wait for transfer to complete */
|
|
mutex_lock(&tx_sync[uart]);
|
|
mutex_unlock(&tx_lock[uart]);
|
|
}
|
|
}
|
|
|
|
void uart_poweron(uart_t uart)
|
|
{
|
|
if (_bus(uart) == 1) {
|
|
RCC->APB1ENR |= uart_config[uart].rcc_mask;
|
|
}
|
|
else {
|
|
RCC->APB2ENR |= uart_config[uart].rcc_mask;
|
|
}
|
|
}
|
|
|
|
void uart_poweroff(uart_t uart)
|
|
{
|
|
if (_bus(uart) == 1) {
|
|
RCC->APB1ENR &= ~(uart_config[uart].rcc_mask);
|
|
}
|
|
else {
|
|
RCC->APB2ENR &= ~(uart_config[uart].rcc_mask);
|
|
}
|
|
}
|
|
|
|
static inline void irq_handler(int uart, USART_TypeDef *dev)
|
|
{
|
|
if (dev->SR & USART_SR_RXNE) {
|
|
char data = (char)dev->DR;
|
|
uart_ctx[uart].rx_cb(uart_ctx[uart].arg, data);
|
|
}
|
|
if (sched_context_switch_request) {
|
|
thread_yield();
|
|
}
|
|
}
|
|
|
|
static inline void dma_handler(int uart, int stream)
|
|
{
|
|
/* clear DMA done flag */
|
|
if (stream < 4) {
|
|
dma_base(stream)->LIFCR = dma_ifc(stream);
|
|
}
|
|
else {
|
|
dma_base(stream)->HIFCR = dma_ifc(stream);
|
|
}
|
|
mutex_unlock(&tx_sync[uart]);
|
|
if (sched_context_switch_request) {
|
|
thread_yield();
|
|
}
|
|
}
|
|
|
|
#ifdef UART_0_ISR
|
|
void UART_0_ISR(void)
|
|
{
|
|
irq_handler(0, uart_config[0].dev);
|
|
}
|
|
|
|
void UART_0_DMA_ISR(void)
|
|
{
|
|
dma_handler(0, uart_config[0].dma_stream);
|
|
}
|
|
#endif
|
|
|
|
#ifdef UART_1_ISR
|
|
void UART_1_ISR(void)
|
|
{
|
|
irq_handler(1, uart_config[1].dev);
|
|
}
|
|
|
|
void UART_1_DMA_ISR(void)
|
|
{
|
|
dma_handler(1, uart_config[1].dma_stream);
|
|
}
|
|
#endif
|
|
|
|
#ifdef UART_2_ISR
|
|
void UART_2_ISR(void)
|
|
{
|
|
irq_handler(2, uart_config[2].dev);
|
|
}
|
|
|
|
void UART_2_DMA_ISR(void)
|
|
{
|
|
dma_handler(2, uart_config[2].dma_stream);
|
|
}
|
|
#endif
|
|
|
|
#ifdef UART_3_ISR
|
|
void UART_3_ISR(void)
|
|
{
|
|
irq_handler(3, uart_config[3].dev);
|
|
}
|
|
|
|
void UART_3_DMA_ISR(void)
|
|
{
|
|
dma_handler(3, uart_config[3].dma_stream);
|
|
}
|
|
#endif
|
|
|
|
#ifdef UART_4_ISR
|
|
void UART_4_ISR(void)
|
|
{
|
|
irq_handler(4, uart_config[4].dev);
|
|
}
|
|
|
|
void UART_4_DMA_ISR(void)
|
|
{
|
|
dma_handler(4, uart_config[4].dma_stream);
|
|
}
|
|
#endif
|
|
|
|
#ifdef UART_5_ISR
|
|
void UART_5_ISR(void)
|
|
{
|
|
irq_handler(5, uart_config[5].dev);
|
|
}
|
|
|
|
void UART_5_DMA_ISR(void)
|
|
{
|
|
dma_handler(5, uart_config[5].dma_stream);
|
|
}
|
|
#endif
|