mirror of
https://github.com/RIOT-OS/RIOT.git
synced 2025-01-18 12:52:44 +01:00
280 lines
7.2 KiB
C
280 lines
7.2 KiB
C
/*
|
|
* Copyright (C) 2015 Kaspar Schleiser <kaspar@schleiser.de>
|
|
* Copyright (C) 2016 Eistec AB
|
|
*
|
|
* This file is subject to the terms and conditions of the GNU Lesser
|
|
* General Public License v2.1. See the file LICENSE in the top level
|
|
* directory for more details.
|
|
*/
|
|
|
|
/**
|
|
* @ingroup sys_xtimer
|
|
*
|
|
* @{
|
|
* @file
|
|
* @brief xtimer convenience functionality
|
|
* @author Kaspar Schleiser <kaspar@schleiser.de>
|
|
* @author Joakim Nohlgård <joakim.nohlgard@eistec.se>
|
|
* @}
|
|
*/
|
|
|
|
#include <assert.h>
|
|
#include <stdint.h>
|
|
#include <string.h>
|
|
|
|
#include "xtimer.h"
|
|
#include "mutex.h"
|
|
#include "thread.h"
|
|
#include "irq.h"
|
|
#include "div.h"
|
|
#include "list.h"
|
|
|
|
#include "timex.h"
|
|
|
|
#ifdef MODULE_CORE_THREAD_FLAGS
|
|
#include "thread_flags.h"
|
|
#endif
|
|
|
|
#define ENABLE_DEBUG 0
|
|
#include "debug.h"
|
|
|
|
typedef struct {
|
|
mutex_t *mutex;
|
|
thread_t *thread;
|
|
int timeout;
|
|
} mutex_thread_t;
|
|
|
|
static void _callback_unlock_mutex(void* arg)
|
|
{
|
|
mutex_t *mutex = (mutex_t *) arg;
|
|
mutex_unlock(mutex);
|
|
}
|
|
|
|
void _xtimer_tsleep(uint32_t offset, uint32_t long_offset)
|
|
{
|
|
if (irq_is_in()) {
|
|
assert(!long_offset);
|
|
_xtimer_spin(offset);
|
|
return;
|
|
}
|
|
|
|
xtimer_t timer;
|
|
mutex_t mutex = MUTEX_INIT;
|
|
|
|
timer.callback = _callback_unlock_mutex;
|
|
timer.arg = (void*) &mutex;
|
|
timer.target = timer.long_target = 0;
|
|
|
|
mutex_lock(&mutex);
|
|
_xtimer_set64(&timer, offset, long_offset);
|
|
mutex_lock(&mutex);
|
|
}
|
|
|
|
void _xtimer_periodic_wakeup(uint32_t *last_wakeup, uint32_t period) {
|
|
xtimer_t timer;
|
|
mutex_t mutex = MUTEX_INIT;
|
|
|
|
timer.callback = _callback_unlock_mutex;
|
|
timer.arg = (void*) &mutex;
|
|
|
|
uint32_t target = (*last_wakeup) + period;
|
|
uint32_t now = _xtimer_now();
|
|
/* make sure we're not setting a value in the past */
|
|
if (now < (*last_wakeup)) {
|
|
/* base timer overflowed between last_wakeup and now */
|
|
if (!((now < target) && (target < (*last_wakeup)))) {
|
|
/* target time has already passed */
|
|
goto out;
|
|
}
|
|
}
|
|
else {
|
|
/* base timer did not overflow */
|
|
if ((((*last_wakeup) <= target) && (target <= now))) {
|
|
/* target time has already passed */
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* For large offsets, set an absolute target time.
|
|
* As that might cause an underflow, for small offsets, set a relative
|
|
* target time.
|
|
* For very small offsets, spin.
|
|
*/
|
|
/*
|
|
* Note: last_wakeup _must never_ specify a time in the future after
|
|
* _xtimer_periodic_sleep returns.
|
|
* If this happens, last_wakeup may specify a time in the future when the
|
|
* next call to _xtimer_periodic_sleep is made, which in turn will trigger
|
|
* the overflow logic above and make the next timer fire too early, causing
|
|
* last_wakeup to point even further into the future, leading to a chain
|
|
* reaction.
|
|
*
|
|
* tl;dr Don't return too early!
|
|
*/
|
|
uint32_t offset = target - now;
|
|
DEBUG("xps, now: %9" PRIu32 ", tgt: %9" PRIu32 ", off: %9" PRIu32 "\n", now, target, offset);
|
|
if (offset < XTIMER_PERIODIC_SPIN) {
|
|
_xtimer_spin(offset);
|
|
}
|
|
else {
|
|
if (offset < XTIMER_PERIODIC_RELATIVE) {
|
|
/* NB: This will overshoot the target by the amount of time it took
|
|
* to get here from the beginning of xtimer_periodic_wakeup()
|
|
*
|
|
* Since interrupts are normally enabled inside this function, this time may
|
|
* be undeterministic. */
|
|
target = _xtimer_now() + offset;
|
|
}
|
|
mutex_lock(&mutex);
|
|
DEBUG("xps, abs: %" PRIu32 "\n", target);
|
|
_xtimer_set_absolute(&timer, target);
|
|
mutex_lock(&mutex);
|
|
}
|
|
out:
|
|
*last_wakeup = target;
|
|
}
|
|
|
|
static void _callback_msg(void* arg)
|
|
{
|
|
msg_t *msg = (msg_t*)arg;
|
|
msg_send_int(msg, msg->sender_pid);
|
|
}
|
|
|
|
static inline void _setup_msg(xtimer_t *timer, msg_t *msg, kernel_pid_t target_pid)
|
|
{
|
|
timer->callback = _callback_msg;
|
|
timer->arg = (void*) msg;
|
|
|
|
/* use sender_pid field to get target_pid into callback function */
|
|
msg->sender_pid = target_pid;
|
|
}
|
|
|
|
void _xtimer_set_msg(xtimer_t *timer, uint32_t offset, msg_t *msg, kernel_pid_t target_pid)
|
|
{
|
|
_setup_msg(timer, msg, target_pid);
|
|
_xtimer_set(timer, offset);
|
|
}
|
|
|
|
void _xtimer_set_msg64(xtimer_t *timer, uint64_t offset, msg_t *msg, kernel_pid_t target_pid)
|
|
{
|
|
_setup_msg(timer, msg, target_pid);
|
|
_xtimer_set64(timer, offset, offset >> 32);
|
|
}
|
|
|
|
static void _callback_wakeup(void* arg)
|
|
{
|
|
thread_wakeup((kernel_pid_t)((intptr_t)arg));
|
|
}
|
|
|
|
void _xtimer_set_wakeup(xtimer_t *timer, uint32_t offset, kernel_pid_t pid)
|
|
{
|
|
timer->callback = _callback_wakeup;
|
|
timer->arg = (void*) ((intptr_t)pid);
|
|
|
|
_xtimer_set(timer, offset);
|
|
}
|
|
|
|
void _xtimer_set_wakeup64(xtimer_t *timer, uint64_t offset, kernel_pid_t pid)
|
|
{
|
|
timer->callback = _callback_wakeup;
|
|
timer->arg = (void*) ((intptr_t)pid);
|
|
|
|
_xtimer_set64(timer, offset, offset >> 32);
|
|
}
|
|
|
|
void xtimer_now_timex(timex_t *out)
|
|
{
|
|
uint64_t now = xtimer_usec_from_ticks64(xtimer_now64());
|
|
|
|
out->seconds = div_u64_by_1000000(now);
|
|
out->microseconds = now - (out->seconds * US_PER_SEC);
|
|
}
|
|
|
|
/* Prepares the message to trigger the timeout.
|
|
* Additionally, the xtimer_t struct gets initialized.
|
|
*/
|
|
static void _setup_timer_msg(msg_t *m, xtimer_t *t)
|
|
{
|
|
m->type = MSG_XTIMER;
|
|
m->content.ptr = m;
|
|
|
|
t->target = t->long_target = 0;
|
|
}
|
|
|
|
/* Waits for incoming message or timeout. */
|
|
static int _msg_wait(msg_t *m, msg_t *tmsg, xtimer_t *t)
|
|
{
|
|
msg_receive(m);
|
|
if (m->type == MSG_XTIMER && m->content.ptr == tmsg) {
|
|
/* we hit the timeout */
|
|
return -1;
|
|
}
|
|
else {
|
|
xtimer_remove(t);
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
int _xtimer_msg_receive_timeout64(msg_t *m, uint64_t timeout_ticks) {
|
|
msg_t tmsg;
|
|
xtimer_t t;
|
|
_setup_timer_msg(&tmsg, &t);
|
|
_xtimer_set_msg64(&t, timeout_ticks, &tmsg, sched_active_pid);
|
|
return _msg_wait(m, &tmsg, &t);
|
|
}
|
|
|
|
int _xtimer_msg_receive_timeout(msg_t *msg, uint32_t timeout_ticks)
|
|
{
|
|
msg_t tmsg;
|
|
xtimer_t t;
|
|
_setup_timer_msg(&tmsg, &t);
|
|
_xtimer_set_msg(&t, timeout_ticks, &tmsg, sched_active_pid);
|
|
return _msg_wait(msg, &tmsg, &t);
|
|
}
|
|
|
|
static void _mutex_timeout(void *arg)
|
|
{
|
|
mutex_thread_t *mt = (mutex_thread_t *)arg;
|
|
|
|
mt->timeout = 1;
|
|
list_node_t *node = list_remove(&mt->mutex->queue,
|
|
(list_node_t *)&mt->thread->rq_entry);
|
|
if ((node != NULL) && (mt->mutex->queue.next == NULL)) {
|
|
mt->mutex->queue.next = MUTEX_LOCKED;
|
|
}
|
|
sched_set_status(mt->thread, STATUS_PENDING);
|
|
thread_yield_higher();
|
|
}
|
|
|
|
int xtimer_mutex_lock_timeout(mutex_t *mutex, uint64_t timeout)
|
|
{
|
|
xtimer_t t;
|
|
mutex_thread_t mt = { mutex, (thread_t *)sched_active_thread, 0 };
|
|
|
|
if (timeout != 0) {
|
|
t.callback = _mutex_timeout;
|
|
t.arg = (void *)((mutex_thread_t *)&mt);
|
|
xtimer_set64(&t, timeout);
|
|
}
|
|
|
|
mutex_lock(mutex);
|
|
xtimer_remove(&t);
|
|
return -mt.timeout;
|
|
}
|
|
|
|
#ifdef MODULE_CORE_THREAD_FLAGS
|
|
static void _set_timeout_flag_callback(void* arg)
|
|
{
|
|
thread_flags_set(arg, THREAD_FLAG_TIMEOUT);
|
|
}
|
|
|
|
void xtimer_set_timeout_flag(xtimer_t *t, uint32_t timeout)
|
|
{
|
|
t->callback = _set_timeout_flag_callback;
|
|
t->arg = (thread_t *)sched_active_thread;
|
|
thread_flags_clear(THREAD_FLAG_TIMEOUT);
|
|
xtimer_set(t, timeout);
|
|
}
|
|
#endif
|