1
0
mirror of https://github.com/RIOT-OS/RIOT.git synced 2025-01-18 12:52:44 +01:00
RIOT/cpu/esp8266/esp-wifi/esp_wifi_netdev.c
2019-12-17 08:28:33 +01:00

848 lines
25 KiB
C

/*
* Copyright (C) 2019 Gunar Schorcht
*
* This file is subject to the terms and conditions of the GNU Lesser
* General Public License v2.1. See the file LICENSE in the top level
* directory for more details.
*/
/**
* @ingroup cpu_esp8266_esp_wifi
* @{
*
* @file
* @brief Network device driver for the ESP8266 WiFi interface
*
* @author Gunar Schorcht <gunar@schorcht.net>
*/
#ifdef MODULE_ESP_WIFI
#include <string.h>
#include <assert.h>
#include <errno.h>
#include "net/gnrc/netif/ethernet.h"
#include "net/gnrc/netif/raw.h"
#include "net/gnrc.h"
#include "net/ethernet.h"
#include "net/netdev/eth.h"
#include "od.h"
#include "xtimer.h"
#include "esp_common.h"
#include "esp_attr.h"
#include "esp_event_loop.h"
#include "esp_now.h"
#include "esp_system.h"
#include "esp_wifi.h"
#include "esp_wifi_internal.h"
#include "irq_arch.h"
#include "tools.h"
#include "nvs_flash/include/nvs_flash.h"
#include "esp_wifi_params.h"
#include "esp_wifi_netdev.h"
#define ENABLE_DEBUG_HEXDUMP (0)
#define ENABLE_DEBUG (0)
#include "debug.h"
#include "log.h"
#define SYSTEM_EVENT_WIFI_RX_DONE (SYSTEM_EVENT_MAX + 3)
#define SYSTEM_EVENT_WIFI_TX_DONE (SYSTEM_EVENT_MAX + 4)
#define ESP_WIFI_DEBUG(f, ...) \
DEBUG("[esp_wifi] %s: " f "\n", __func__, ## __VA_ARGS__)
#define ESP_WIFI_LOG_INFO(f, ...) \
LOG_TAG_INFO("esp_wifi", f "\n", ## __VA_ARGS__)
#define ESP_WIFI_LOG_ERROR(f, ...) \
LOG_TAG_ERROR("esp_wifi", f "\n", ## __VA_ARGS__)
#define MAC_STR "%02x:%02x:%02x:%02x:%02x:%02x"
#define MAC_STR_ARG(m) m[0], m[1], m[2], m[3], m[4], m[5]
#ifdef MCU_ESP8266
#include "esp_socket.h"
#include "net/sockio.h"
#include "xtensa/xtensa_context.h"
#define CONFIG_TCP_OVERSIZE_MSS 1
#define LL_ALIGN(s) (((uint32_t)s + 3) & 0xfffffffcU)
/**
* The SDK interface of the WiFi module uses the lwIP `pbuf` structure for
* packets sent to and received from the WiFi interface. For compatibility
* reasons with the binary SDK libraries we need to incclude the SDK lwIP
* `pbuf` header here.
*
* To avoid compilation errors, we need to undefine all our pkg/lwIP settings
* that are also defined by SDK lwIP header files. These definitions do not
* affect the implementation of this module.
*/
#undef ETHARP_SUPPORT_STATIC_ENTRIES
#undef LWIP_HAVE_LOOPIF
#undef LWIP_NETIF_LOOPBACK
#undef SO_REUSE
#undef TCPIP_THREAD_PRIO
#undef TCPIP_THREAD_STACKSIZE
#include "lwip/pbuf.h"
#endif /* MCU_ESP8266 */
/**
* There is only one ESP WiFi device. We define it as static device variable
* to have access to the device inside ESP WiFi interrupt routines which do
* not provide an argument that could be used as pointer to the ESP WiFi
* device which triggers the interrupt.
*/
esp_wifi_netdev_t _esp_wifi_dev;
static const netdev_driver_t _esp_wifi_driver;
/* device thread stack */
static char _esp_wifi_stack[ESP_WIFI_STACKSIZE];
/** guard variable to avoid reentrance to _esp_wifi_send function */
static bool _esp_wifi_send_is_in = false;
/** guard variable to to decive when receive buffer can be overwritten */
static bool _esp_wifi_rx_in_progress = false;
extern esp_err_t esp_system_event_add_handler (system_event_cb_t handler,
void *arg);
#ifdef MCU_ESP8266
/**
* The low level WiFi driver function expects a lwIP pbuf data structure as
* input. To avoid the integration of the whole lwIP package from ESP8266 RTOS
* SDK, only the pbuf allocation function is realized with a very restricted
* functionality. It uses malloc to allocate a packet buffer of type PBUF_RAM
* for layer PBUF_RAW_TX.
*/
static struct pbuf *_esp_wifi_pbuf_alloc(size_t size)
{
/* Low level WiFi driver can only use 32-bit aligned DRAM memory */
size_t mem_size = LL_ALIGN(sizeof(struct pbuf)) + LL_ALIGN(size + PBUF_LINK_ENCAPSULATION_HLEN);
struct pbuf *pb = heap_caps_malloc(mem_size, MALLOC_CAP_8BIT);
if (pb == NULL) {
ESP_WIFI_LOG_ERROR("no space left for packet buffer allocation");
return NULL;
}
memset(pb, 0, mem_size);
/* initialize pbuf data structure */
pb->next = NULL;
pb->payload = (void *)LL_ALIGN((uint8_t *)pb + sizeof(struct pbuf) + PBUF_LINK_ENCAPSULATION_HLEN);
pb->tot_len = size;
pb->len = size;
pb->type = PBUF_RAM;
pb->flags = 0;
pb->ref = 1;
ESP_WIFI_DEBUG("pb=%p size=%d", pb, size);
return (struct pbuf*)pb;
}
/**
* Free function for pbuf allocation
*/
static int _esp_wifi_pbuf_free(struct pbuf *pb)
{
assert(pb != NULL);
ESP_WIFI_DEBUG("pb=%p ref=%d", pb, pb->ref);
if (pb->ref > 1) {
pb->ref--;
}
else if (pb->ref == 1) {
pb->ref = 0;
heap_caps_free(pb);
return 1;
}
return 0;
}
/**
* Socket used for interaction with low level WiFi driver, -1 if not opened.
* Since we have only one WiFi interface, it has not to be a member of the
* netdev data structures. We can use a static variable instead.
*/
static int _esp_wifi_socket = -1;
/**
* Function called when transmission of a packet has been finished.
*/
static int _esp_wifi_tx_cb(esp_aio_t* aio)
{
assert(aio != NULL);
ESP_WIFI_DEBUG("aio=%p buf=%p", aio, aio->pbuf);
struct pbuf* pbuf = aio->arg;
_esp_wifi_pbuf_free(pbuf);
_esp_wifi_send_is_in = false;
_esp_wifi_dev.netdev.event_callback(&_esp_wifi_dev.netdev, NETDEV_EVENT_TX_COMPLETE);
return 0;
}
/**
* Function for source code compatibility with ESP-IDF for ESP32
*/
int esp_wifi_internal_tx(wifi_interface_t wifi_if, void *buf, uint16_t len)
{
ESP_WIFI_DEBUG("buf=%p len=%u", buf, len);
struct pbuf *pb = _esp_wifi_pbuf_alloc(len);
if (pb == NULL) {
return ERR_MEM;
}
if (len) {
memcpy(pb->payload, buf, len);
}
esp_aio_t aio;
aio.fd = wifi_if;
aio.pbuf = pb->payload;
aio.len = pb->len;
aio.cb = _esp_wifi_tx_cb;
aio.arg = pb;
aio.ret = 0;
if (esp_aio_sendto(&aio, NULL, 0) != 0) {
return ERR_IF;
}
ESP_WIFI_DEBUG("done");
return ERR_OK;
}
/**
* Function for source code compatibility with ESP-IDF for ESP32
*/
void esp_wifi_internal_free_rx_buffer(const char* buf)
{
assert(buf != NULL);
assert(_esp_wifi_socket != -1);
ESP_WIFI_DEBUG("buf=%p sock=%d", buf, _esp_wifi_socket);
esp_free_pbuf(_esp_wifi_socket, (void *)buf);
}
/**
* Type definition for source code compatibility with ESP-IDF for ESP32
*/
typedef int (*wifi_rxcb_t)(struct esp_aio *aio);
/**
* Function for source code compatibility with ESP-IDF for ESP32
*/
esp_err_t esp_wifi_internal_reg_rxcb(wifi_interface_t ifx, wifi_rxcb_t fn)
{
assert(ifx == ESP_IF_WIFI_STA);
ESP_WIFI_DEBUG("%d %p", ifx, fn);
extern int8_t wifi_get_netif(uint8_t fd);
/* if function is NULL, it is deregistered */
if (fn == NULL) {
/* if socket is allocated, it has to be closed */
if (_esp_wifi_socket != -1 && esp_close(_esp_wifi_socket) < 0) {
return ESP_FAIL;
}
_esp_wifi_socket = -1;
return ESP_OK;
}
/* if socket is already allocated we have to close it to register a function */
if (_esp_wifi_socket != -1 && esp_close(_esp_wifi_socket) < 0) {
return ESP_FAIL;
}
/* now, we have to allocate a new socket and register the function */
_esp_wifi_socket = esp_socket(AF_PACKET, SOCK_RAW, ETH_P_ALL);
if (_esp_wifi_socket < 0) {
ESP_WIFI_LOG_ERROR("create socket of (AF_PACKET, SOCK_RAW, ETH_P_ALL) error");
return ESP_FAIL;
}
if (esp_ioctl(_esp_wifi_socket, SIOCGIFINDEX, "sta0") < 0) {
ESP_WIFI_LOG_ERROR("bind socket %d to netcard %s error", _esp_wifi_socket, "sta0");
esp_close(_esp_wifi_socket);
return ESP_FAIL;
}
if (esp_aio_event(_esp_wifi_socket, ESP_SOCKET_RECV_EVENT, fn, &_esp_wifi_dev) < 0) {
ESP_WIFI_LOG_ERROR("socket %d register receive callback function %p error",
_esp_wifi_socket, fn);
esp_close(_esp_wifi_socket);
return ESP_FAIL;
}
return ESP_OK;
}
#endif /* MCU_ESP8266 */
#ifdef MCU_ESP8266
/* Prolog for source code compatibility with ESP-IDF for ESP32 */
static int _esp_wifi_rx_cb(struct esp_aio *aio)
{
assert(aio != NULL);
const char *eb = aio->pbuf;
const char *buffer = aio->pbuf;
uint16_t len = aio->len;
#else /* MCU_ESP8266 */
esp_err_t _esp_wifi_rx_cb(void *buffer, uint16_t len, void *eb)
{
#endif /* MCU_ESP8266 */
/*
* This callback function is not executed in interrupt context but in the
* context of the low level WiFi driver thread. That is, mutex_lock or
* msg_send functions could block.
*/
assert(buffer != NULL);
assert(len <= ETHERNET_MAX_LEN);
critical_enter();
ESP_WIFI_DEBUG("buf=%p len=%d eb=%p", buffer, len, eb);
/*
* The ring buffer uses a single byte for the pkt length, followed by the mac address,
* followed by the actual packet data. The MTU for ESP-NOW is 250 bytes, so len will never
* exceed the limits of a byte as the mac address length is not included.
*/
if (ringbuffer_get_free(&_esp_wifi_dev.rx_buf) < len + sizeof(uint16_t)) {
ESP_WIFI_DEBUG("buffer full, dropping incoming packet of %d bytes", len);
/* free the receive buffer */
if (eb) {
esp_wifi_internal_free_rx_buffer(eb);
}
/*
* we must not return a failure code in this case, otherwise,
* the WiFi driver hangs up
*/
critical_exit();
return ESP_OK;
}
/* store length information as first two bytes */
ringbuffer_add(&_esp_wifi_dev.rx_buf, (char *)&len, sizeof(uint16_t));
/* copy the buffer and free WiFi driver buffer */
ringbuffer_add(&_esp_wifi_dev.rx_buf, (char *)buffer, len);
if (eb) {
esp_wifi_internal_free_rx_buffer(eb);
}
/*
* Because this function is not executed in interrupt context but in thread
* context, following msg_send could block on heavy network load, if frames
* are coming in faster than the ISR events can be handled. To avoid
* blocking during msg_send, we pretend we are in an ISR by incrementing
* the IRQ nesting counter. If IRQ nesting counter is greater 0, function
* irq_is_in returns true and the non-blocking version of msg_send is used.
*/
irq_interrupt_nesting++;
/* trigger netdev event to read the data */
_esp_wifi_dev.event_recv++;
_esp_wifi_dev.netdev.event_callback(&_esp_wifi_dev.netdev, NETDEV_EVENT_ISR);
/* reset IRQ nesting counter */
irq_interrupt_nesting--;
critical_exit();
return ESP_OK;
}
#define REASON_BEACON_TIMEOUT (200)
#define REASON_HANDSHAKE_TIMEOUT (204)
#define INDEX_BEACON_TIMEOUT (REASON_BEACON_TIMEOUT - 24)
static const char *_esp_wifi_disc_reasons [] = {
"INVALID", /* 0 */
"UNSPECIFIED", /* 1 */
"AUTH_EXPIRE", /* 2 */
"AUTH_LEAVE", /* 3 */
"ASSOC_EXPIRE", /* 4 */
"ASSOC_TOOMANY", /* 5 */
"NOT_AUTHED", /* 6 */
"NOT_ASSOCED", /* 7 */
"ASSOC_LEAVE", /* 8 */
"ASSOC_NOT_AUTHED", /* 9 */
"DISASSOC_PWRCAP_BAD", /* 10 (11h) */
"DISASSOC_SUPCHAN_BAD", /* 11 (11h) */
"IE_INVALID", /* 13 (11i) */
"MIC_FAILURE", /* 14 (11i) */
"4WAY_HANDSHAKE_TIMEOUT", /* 15 (11i) */
"GROUP_KEY_UPDATE_TIMEOUT", /* 16 (11i) */
"IE_IN_4WAY_DIFFERS", /* 17 (11i) */
"GROUP_CIPHER_INVALID", /* 18 (11i) */
"PAIRWISE_CIPHER_INVALID", /* 19 (11i) */
"AKMP_INVALID", /* 20 (11i) */
"UNSUPP_RSN_IE_VERSION", /* 21 (11i) */
"INVALID_RSN_IE_CAP", /* 22 (11i) */
"802_1X_AUTH_FAILED", /* 23 (11i) */
"CIPHER_SUITE_REJECTED", /* 24 (11i) */
"BEACON_TIMEOUT", /* 200 */
"NO_AP_FOUND", /* 201 */
"AUTH_FAIL", /* 202 */
"ASSOC_FAIL", /* 203 */
"HANDSHAKE_TIMEOUT" /* 204 */
};
/*
* Event handler for esp system events.
*/
static esp_err_t IRAM_ATTR _esp_system_event_handler(void *ctx, system_event_t *event)
{
assert(event != NULL);
esp_err_t result;
uint8_t reason;
const char* reason_str = "UNKNOWN";
switch(event->event_id) {
case SYSTEM_EVENT_STA_START:
ESP_WIFI_DEBUG("WiFi started");
result = esp_wifi_connect();
if (result != ESP_OK) {
ESP_WIFI_LOG_ERROR("esp_wifi_connect failed with return "
"value %d", result);
}
break;
case SYSTEM_EVENT_SCAN_DONE:
ESP_WIFI_DEBUG("WiFi scan done");
break;
case SYSTEM_EVENT_STA_CONNECTED:
ESP_WIFI_LOG_INFO("connected to ssid %s, channel %d",
event->event_info.connected.ssid,
event->event_info.connected.channel);
/* register RX callback function */
esp_wifi_internal_reg_rxcb(ESP_IF_WIFI_STA, _esp_wifi_rx_cb);
_esp_wifi_dev.connected = true;
_esp_wifi_dev.event_conn++;
_esp_wifi_dev.netdev.event_callback(&_esp_wifi_dev.netdev, NETDEV_EVENT_ISR);
break;
case SYSTEM_EVENT_STA_DISCONNECTED:
reason = event->event_info.disconnected.reason;
if (reason < REASON_BEACON_TIMEOUT) {
reason_str = _esp_wifi_disc_reasons[reason];
}
else if (reason <= REASON_HANDSHAKE_TIMEOUT) {
reason_str = _esp_wifi_disc_reasons[reason - INDEX_BEACON_TIMEOUT];
}
ESP_WIFI_LOG_INFO("disconnected from ssid %s, reason %d (%s)",
event->event_info.disconnected.ssid,
event->event_info.disconnected.reason, reason_str);
/* unregister RX callback function */
esp_wifi_internal_reg_rxcb(ESP_IF_WIFI_STA, NULL);
_esp_wifi_dev.connected = false;
_esp_wifi_dev.event_disc++;
_esp_wifi_dev.netdev.event_callback(&_esp_wifi_dev.netdev, NETDEV_EVENT_ISR);
/* call disconnect to reset internal state */
result = esp_wifi_disconnect();
if (result != ESP_OK) {
ESP_WIFI_LOG_ERROR("esp_wifi_disconnect failed with "
"return value %d", result);
return result;
}
/* try to reconnect */
result = esp_wifi_connect();
if (result != ESP_OK) {
ESP_WIFI_LOG_ERROR("esp_wifi_connect failed with "
"return value %d", result);
}
break;
default:
ESP_WIFI_DEBUG("event %d", event->event_id);
break;
}
return ESP_OK;
}
static int _esp_wifi_send(netdev_t *netdev, const iolist_t *iolist)
{
ESP_WIFI_DEBUG("netdev=%p iolist=%p", netdev, iolist);
assert(netdev != NULL);
assert(iolist != NULL);
if (_esp_wifi_send_is_in) {
return 0;
}
_esp_wifi_send_is_in = true;
esp_wifi_netdev_t* dev = (esp_wifi_netdev_t*)netdev;
if (!_esp_wifi_dev.connected) {
ESP_WIFI_DEBUG("WiFi is still not connected to AP, cannot send");
_esp_wifi_send_is_in = false;
return -ENODEV;
}
critical_enter();
dev->tx_len = 0;
/* load packet data into TX buffer */
for (const iolist_t *iol = iolist; iol; iol = iol->iol_next) {
if (dev->tx_len + iol->iol_len > ETHERNET_MAX_LEN) {
_esp_wifi_send_is_in = false;
critical_exit();
return -EOVERFLOW;
}
if (iol->iol_len) {
memcpy (dev->tx_buf + dev->tx_len, iol->iol_base, iol->iol_len);
dev->tx_len += iol->iol_len;
}
}
#if ENABLE_DEBUG
ESP_WIFI_DEBUG("send %d byte", dev->tx_len);
#if MODULE_OD && ENABLE_DEBUG_HEXDUMP
od_hex_dump(dev->tx_buf, dev->tx_le, OD_WIDTH_DEFAULT);
#endif /* MODULE_OD && ENABLE_DEBUG_HEXDUMP */
#endif
critical_exit();
int ret = 0;
/* send the the packet to the peer(s) mac address */
if (esp_wifi_internal_tx(ESP_IF_WIFI_STA, dev->tx_buf, dev->tx_len) == ESP_OK) {
#ifdef MCU_ESP32
/* for ESP8266 it is done in _esp_wifi_tx_cb */
_esp_wifi_send_is_in = false;
netdev->event_callback(netdev, NETDEV_EVENT_TX_COMPLETE);
#endif
}
else {
_esp_wifi_send_is_in = false;
ESP_WIFI_DEBUG("sending WiFi packet failed");
ret = -EIO;
}
return ret;
}
static int _esp_wifi_recv(netdev_t *netdev, void *buf, size_t len, void *info)
{
ESP_WIFI_DEBUG("%p %p %u %p", netdev, buf, len, info);
assert(netdev != NULL);
esp_wifi_netdev_t* dev = (esp_wifi_netdev_t*)netdev;
uint16_t size;
critical_enter();
_esp_wifi_rx_in_progress = true;
if (ringbuffer_peek(&dev->rx_buf, (char *)&size, sizeof(uint16_t)) < sizeof(uint16_t)) {
critical_exit();
return 0;
}
if (!buf) {
/* get the size of the frame */
if (len > 0 && size) {
/* if len > 0, drop the frame */
ringbuffer_remove(&dev->rx_buf, sizeof(uint16_t) + size);
_esp_wifi_rx_in_progress = false;
}
critical_exit();
return size;
}
if (len < size) {
/* buffer is smaller than the number of received bytes */
ESP_WIFI_DEBUG("not enough space in receive buffer");
/* newest API requires to drop the frame in that case */
ringbuffer_remove(&dev->rx_buf, sizeof(uint16_t) + size);
_esp_wifi_rx_in_progress = false;
critical_exit();
return -ENOBUFS;
}
/* remove length bytes, copy the buffer to the ringbuffer and free it */
ringbuffer_remove(&dev->rx_buf, sizeof(uint16_t));
ringbuffer_get(&dev->rx_buf, buf, size);
#if ENABLE_DEBUG
ethernet_hdr_t *hdr = (ethernet_hdr_t *)buf;
ESP_WIFI_DEBUG("received %u byte from addr " MAC_STR,
size, MAC_STR_ARG(hdr->src));
#if MODULE_OD && ENABLE_DEBUG_HEXDUMP
od_hex_dump(buf, size, OD_WIDTH_DEFAULT);
#endif /* MODULE_OD && ENABLE_DEBUG_HEXDUMP */
#endif /* ENABLE_DEBUG */
critical_exit();
return size;
}
static int _esp_wifi_get(netdev_t *netdev, netopt_t opt, void *val, size_t max_len)
{
ESP_WIFI_DEBUG("%s %p %p %u", netopt2str(opt), netdev, val, max_len);
assert(netdev != NULL);
assert(val != NULL);
esp_wifi_netdev_t* dev = (esp_wifi_netdev_t*)netdev;
switch (opt) {
case NETOPT_IS_WIRED:
return -ENOTSUP;
case NETOPT_ADDRESS:
assert(max_len >= ETHERNET_ADDR_LEN);
esp_wifi_get_mac(ESP_MAC_WIFI_STA,(uint8_t *)val);
return ETHERNET_ADDR_LEN;
case NETOPT_LINK_CONNECTED:
assert(max_len == 1);
*((netopt_enable_t *)val) = (dev->connected) ? NETOPT_ENABLE
: NETOPT_DISABLE;
return 1;
default:
return netdev_eth_get(netdev, opt, val, max_len);
}
}
static int _esp_wifi_set(netdev_t *netdev, netopt_t opt, const void *val, size_t max_len)
{
ESP_WIFI_DEBUG("%s %p %p %u", netopt2str(opt), netdev, val, max_len);
assert(netdev != NULL);
assert(val != NULL);
switch (opt) {
case NETOPT_ADDRESS:
assert(max_len == ETHERNET_ADDR_LEN);
esp_wifi_set_mac(ESP_MAC_WIFI_STA, (uint8_t *)val);
return ETHERNET_ADDR_LEN;
default:
return netdev_eth_set(netdev, opt, val, max_len);
}
}
static void _esp_wifi_isr(netdev_t *netdev)
{
ESP_WIFI_DEBUG("%p", netdev);
assert(netdev != NULL);
esp_wifi_netdev_t *dev = (esp_wifi_netdev_t *) netdev;
while (dev->event_recv) {
dev->event_recv--;
dev->netdev.event_callback(netdev, NETDEV_EVENT_RX_COMPLETE);
}
if (dev->event_conn) {
dev->event_conn--;
dev->netdev.event_callback(netdev, NETDEV_EVENT_LINK_UP);
}
else if (dev->event_disc) {
dev->event_disc--;
dev->netdev.event_callback(netdev, NETDEV_EVENT_LINK_DOWN);
}
return;
}
static int _esp_wifi_init(netdev_t *netdev)
{
ESP_WIFI_DEBUG("%p", netdev);
return 0;
}
static const netdev_driver_t _esp_wifi_driver =
{
.send = _esp_wifi_send,
.recv = _esp_wifi_recv,
.init = _esp_wifi_init,
.isr = _esp_wifi_isr,
.get = _esp_wifi_get,
.set = _esp_wifi_set,
};
/*
* Static configuration for the Station interface
*/
static wifi_config_t wifi_config_sta = {
.sta = {
.ssid = ESP_WIFI_SSID,
.password = ESP_WIFI_PASS,
.channel = 0,
.scan_method = WIFI_ALL_CHANNEL_SCAN,
.sort_method = WIFI_CONNECT_AP_BY_SIGNAL,
.threshold.rssi = -127,
.threshold.authmode = WIFI_AUTH_WPA_WPA2_PSK
}
};
#ifndef MODULE_ESP_NOW
/**
* Static configuration for the SoftAP interface if ESP-NOW is not enabled.
*
* Although only the Station interface is needed, the SoftAP interface must
* also be enabled for stability reasons to prevent the Station interface
* from being shut down by power management in the event of silence.
* Otherwise, the WLAN module and the WLAN task will hang sporadically.
*
* Since the SoftAP interface is not required, we make it invisible and
* unusable. This configuration
*
* - uses the same hidden SSID that the Station interface uses to
* connect to the AP,
* - uses the same channel that the Station interface uses to connect to the AP,
* - defines a very long beacon interval
* - doesn't allow any connection.
*/
static wifi_config_t wifi_config_ap = {
.ap = {
.ssid = ESP_WIFI_SSID,
.ssid_len = ARRAY_SIZE(ESP_WIFI_SSID),
.ssid_hidden = 1, /* don't make the AP visible */
.password = ESP_WIFI_PASS,
.authmode = WIFI_AUTH_WPA2_PSK,
.max_connection = 0, /* don't allow connections */
.beacon_interval = 60000, /* send beacon only every 60 s */
}
};
#endif
void esp_wifi_setup (esp_wifi_netdev_t* dev)
{
ESP_WIFI_DEBUG("dev=%p", dev);
/* initialize buffer */
ringbuffer_init(&dev->rx_buf, (char*)dev->rx_mem, sizeof(dev->rx_mem));
/* set the event handler */
esp_system_event_add_handler(_esp_system_event_handler, NULL);
/*
* Init the WiFi driver. TODO It is not only required before ESP_WIFI is
* initialized but also before other WiFi functions are used. Once other
* WiFi functions are realized it has to be moved to a more common place.
*/
esp_err_t result;
#ifndef MODULE_ESP_NOW
/* if module esp_now is used, the following part is already done */
#if MCU_ESP32
extern portMUX_TYPE g_intr_lock_mux;
mutex_init(&g_intr_lock_mux);
#endif
#if CONFIG_ESP32_WIFI_NVS_ENABLED
result = nvs_flash_init();
if (result != ESP_OK) {
ESP_WIFI_LOG_ERROR("nfs_flash_init failed with return value %d", result);
return;
}
#endif /* CONFIG_ESP32_WIFI_NVS_ENABLED */
wifi_init_config_t cfg = WIFI_INIT_CONFIG_DEFAULT();
result = esp_wifi_init(&cfg);
if (result != ESP_OK) {
ESP_WIFI_LOG_ERROR("esp_wifi_init failed with return value %d", result);
return;
}
#ifdef CONFIG_WIFI_COUNTRY
/* TODO */
#endif
/* activate the Station and the SoftAP interface */
result = esp_wifi_set_mode(WIFI_MODE_APSTA);
if (result != ESP_OK) {
ESP_WIFI_LOG_ERROR("esp_wifi_set_mode failed with return value %d", result);
return;
}
/* set the SoftAP configuration */
result = esp_wifi_set_config(ESP_IF_WIFI_AP, &wifi_config_ap);
if (result != ESP_OK) {
ESP_WIFI_LOG_ERROR("esp_wifi_set_config softap failed with return value %d", result);
return;
}
#endif /* MODULE_ESP_NOW */
/* set the Station configuration */
result = esp_wifi_set_config(ESP_IF_WIFI_STA, &wifi_config_sta);
if (result != ESP_OK) {
ESP_WIFI_LOG_ERROR("esp_wifi_set_config station failed with return value %d", result);
return;
}
/* start the WiFi driver */
result = esp_wifi_start();
if (result != ESP_OK) {
ESP_WIFI_LOG_ERROR("esp_wifi_start failed with return value %d", result);
return;
}
/* register RX callback function */
esp_wifi_internal_reg_rxcb(ESP_IF_WIFI_STA, _esp_wifi_rx_cb);
/* set the netdev driver */
dev->netdev.driver = &_esp_wifi_driver;
/* initialize netdev data structure */
dev->connected = false;
dev->event_recv = 0;
dev->event_conn = 0;
dev->event_disc = 0;
}
void auto_init_esp_wifi (void)
{
ESP_WIFI_DEBUG("initializing ESP WiFi device");
esp_wifi_setup(&_esp_wifi_dev);
_esp_wifi_dev.netif = gnrc_netif_ethernet_create(_esp_wifi_stack,
ESP_WIFI_STACKSIZE,
#ifdef MODULE_ESP_NOW
ESP_WIFI_PRIO - 1,
#else
ESP_WIFI_PRIO,
#endif
"esp_wifi",
(netdev_t *)&_esp_wifi_dev);
}
#endif /* MODULE_ESP_WIFI */
/**@}*/