1
0
mirror of https://github.com/RIOT-OS/RIOT.git synced 2024-12-29 04:50:03 +01:00
RIOT/cpu/stm32/periph/gpio_ll_irq.c
Marian Buschsieweke 4a0c462ec3
cpu/stm32: Implement gpio_ll for STM32F1
This provides basic GPIO LL support. IRQ support will be added as
follow up.
2023-03-20 14:14:07 +01:00

309 lines
8.6 KiB
C

/*
* Copyright (C) 2014-2015 Freie Universität Berlin
* 2015 Hamburg University of Applied Sciences
* 2017-2020 Inria
* 2017 OTA keys S.A.
* 2021 Otto-von-Guericke-Universität Magdeburg
*
* This file is subject to the terms and conditions of the GNU Lesser General
* Public License v2.1. See the file LICENSE in the top level directory for more
* details.
*/
/**
* @ingroup cpu_stm32
* @ingroup drivers_periph_gpio_ll_irq
* @{
*
* @file
* @brief IRQ implementation of the GPIO Low-Level API for STM32 (except F1)
*
* @author Hauke Petersen <hauke.petersen@fu-berlin.de>
* @author Fabian Nack <nack@inf.fu-berlin.de>
* @author Alexandre Abadie <alexandre.abadie@inria.fr>
* @author Katja Kirstein <katja.kirstein@haw-hamburg.de>
* @author Vincent Dupont <vincent@otakeys.com>
* @author Marian Buschsieweke <marian.buschsieweke@ovgu.de>
*
* @}
*/
#include <errno.h>
#include "cpu.h"
#include "bitarithm.h"
#include "periph/gpio_ll_irq.h"
#define ENABLE_DEBUG 0
#include "debug.h"
#define EXTI_NUMOF (16U)
#define EXTI_MASK (0xFFFF)
#if defined(EXTI_SWIER_SWI0) || defined(EXTI_SWIER_SWIER0)
#define EXTI_REG_SWIER (EXTI->SWIER)
#endif
#if defined(EXTI_SWIER1_SWI0) || defined(EXTI_SWIER1_SWIER0)
#define EXTI_REG_SWIER (EXTI->SWIER1)
#endif
#if defined(EXTI_RTSR_RT0) || defined(EXTI_RTSR_TR0)
#define EXTI_REG_RTSR (EXTI->RTSR)
#endif
#if defined(EXTI_RTSR1_RT0) || defined(EXTI_RTSR1_TR0)
#define EXTI_REG_RTSR (EXTI->RTSR1)
#endif
#if defined(EXTI_FTSR_FT0) || defined(EXTI_FTSR_TR0)
#define EXTI_REG_FTSR (EXTI->FTSR)
#endif
#if defined(EXTI_FTSR1_FT0) || defined (EXTI_FTSR1_TR0)
#define EXTI_REG_FTSR (EXTI->FTSR1)
#endif
#ifdef EXTI_PR_PR0
#define EXTI_REG_PR (EXTI->PR)
#endif
#ifdef EXTI_PR1_PIF0
#define EXTI_REG_PR (EXTI->PR1)
#endif
#if defined(EXTI_C2_BASE)
# define EXTI_REG_IMR (EXTI_C2->IMR1)
#elif defined(EXTI_IMR_IM0)
# define EXTI_REG_IMR (EXTI->IMR)
#elif defined(EXTI_IMR1_IM0)
# define EXTI_REG_IMR (EXTI->IMR1)
#endif
void gpio_ll_irq_mask(gpio_port_t port, uint8_t pin)
{
(void)port;
EXTI_REG_IMR &= ~(1 << pin);
}
void gpio_ll_irq_unmask_and_clear(gpio_port_t port, uint8_t pin)
{
(void)port;
EXTI_REG_IMR |= (1 << pin);
}
struct isr_ctx {
gpio_ll_cb_t cb;
void *arg;
};
static struct isr_ctx isr_ctx[EXTI_NUMOF];
static uint16_t level_triggered;
static IRQn_Type get_irqn(uint8_t pin)
{
#if defined(CPU_FAM_STM32L5) || defined(CPU_FAM_STM32U5)
return EXTI0_IRQn + pin;
#elif defined(CPU_FAM_STM32F0) || defined(CPU_FAM_STM32L0) || \
defined(CPU_FAM_STM32G0)
if (pin < 2) {
return EXTI0_1_IRQn;
}
else if (pin < 4) {
return EXTI2_3_IRQn;
}
else {
return EXTI4_15_IRQn;
}
#elif defined(CPU_FAM_STM32MP1)
if (pin < 5) {
return EXTI0_IRQn + pin;
}
else if (pin < 6) {
return EXTI5_IRQn;
}
else if (pin < 10) {
return EXTI6_IRQn + pin - 6;
}
else if (pin < 11) {
return EXTI10_IRQn;
}
else if (pin < 12) {
return EXTI11_IRQn;
}
else if (pin < 14) {
return EXTI12_IRQn + pin - 12;
}
else if (pin < 15) {
return EXTI14_IRQn;
}
else {
return EXTI15_IRQn;
}
#else
if (pin < 5) {
return EXTI0_IRQn + pin;
}
else if (pin < 10) {
return EXTI9_5_IRQn;
}
else {
return EXTI15_10_IRQn;
}
#endif
}
static void clear_pending_irqs(uint8_t pin)
{
#if defined(CPU_FAM_STM32G0) || defined(CPU_FAM_STM32L5) || \
defined(CPU_FAM_STM32U5) || defined(CPU_FAM_STM32MP1)
/* clear any pending requests */
EXTI->RPR1 = (1 << pin);
EXTI->FPR1 = (1 << pin);
#else
/* clear any pending requests */
EXTI_REG_PR = (1 << pin);
#endif
}
static void set_exti_port(uint8_t exti_num, uint8_t port_num)
{
#if defined(CPU_FAM_STM32G0) || defined(CPU_FAM_STM32L5) || \
defined(CPU_FAM_STM32U5)
/* enable specific pin as exti sources */
EXTI->EXTICR[exti_num >> 2] &= ~(0xf << ((exti_num & 0x03) * 8));
EXTI->EXTICR[exti_num >> 2] |= (port_num << ((exti_num & 0x03) * 8));
#elif defined(CPU_FAM_STM32MP1)
/* enable specific pin as exti sources */
EXTI->EXTICR[exti_num >> 2] &= ~(0xf << ((exti_num & 0x03) * 4));
EXTI->EXTICR[exti_num >> 2] |= (port_num << ((exti_num & 0x03) * 4));
#else
/* enable specific pin as exti sources */
SYSCFG->EXTICR[exti_num >> 2] &= ~(0xf << ((exti_num & 0x03) * 4));
SYSCFG->EXTICR[exti_num >> 2] |= (port_num << ((exti_num & 0x03) * 4));
#endif
}
static uint8_t get_exti_port(uint8_t exti_num)
{
#if defined(CPU_FAM_STM32G0) || defined(CPU_FAM_STM32L5) || \
defined(CPU_FAM_STM32U5)
/* enable specific pin as exti sources */
return 0xf & (EXTI->EXTICR[exti_num >> 2] >> ((exti_num & 0x03) * 8));
#elif defined(CPU_FAM_STM32MP1)
/* enable specific pin as exti sources */
return 0xf & (EXTI->EXTICR[exti_num >> 2] >> ((exti_num & 0x03) * 4));
#else
/* enable specific pin as exti sources */
return 0xf & (SYSCFG->EXTICR[exti_num >> 2] >> ((exti_num & 0x03) * 4));
#endif
}
int gpio_ll_irq(gpio_port_t port, uint8_t pin, gpio_irq_trig_t trig, gpio_ll_cb_t cb, void *arg)
{
unsigned irq_state = irq_disable();
int port_num = GPIO_PORT_NUM(port);
/* set callback */
isr_ctx[pin].cb = cb;
isr_ctx[pin].arg = arg;
/* enable clock of the SYSCFG module for EXTI configuration */
#if !defined(CPU_FAM_STM32WB) && !defined(CPU_FAM_STM32MP1) && \
!defined(CPU_FAM_STM32WL)
#ifdef CPU_FAM_STM32F0
periph_clk_en(APB2, RCC_APB2ENR_SYSCFGCOMPEN);
#elif defined(CPU_FAM_STM32G0)
periph_clk_en(APB12, RCC_APBENR2_SYSCFGEN);
#elif defined(CPU_FAM_STM32U5)
periph_clk_en(APB3, RCC_APB3ENR_SYSCFGEN);
#else
periph_clk_en(APB2, RCC_APB2ENR_SYSCFGEN);
#endif
#endif
/* enable global pin interrupt */
NVIC_EnableIRQ(get_irqn(pin));
/* configure trigger */
if (trig & GPIO_TRIGGER_EDGE_RISING) {
EXTI_REG_RTSR |= 1UL << pin;
}
else {
EXTI_REG_RTSR &= ~(1UL << pin);
}
if (trig & GPIO_TRIGGER_EDGE_FALLING) {
EXTI_REG_FTSR |= 1UL << pin;
}
else {
EXTI_REG_FTSR &= ~(1UL << pin);
}
set_exti_port(pin, port_num);
clear_pending_irqs(pin);
gpio_ll_irq_unmask_and_clear(port, pin);
if (trig & GPIO_TRIGGER_LEVEL) {
level_triggered |= 1UL << pin;
/* if input is already at trigger level there might be no flank, so issue soft IRQ */
uint32_t actual_level = gpio_ll_read(port) & (1UL << pin);
uint32_t trigger_level = EXTI_REG_RTSR & (1UL << pin);
if (actual_level == trigger_level) {
EXTI_REG_SWIER = 1UL << pin;
}
}
else {
level_triggered &= ~(1UL << pin);
}
irq_restore(irq_state);
return 0;
}
void isr_exti(void)
{
#if defined(CPU_FAM_STM32G0) || defined(CPU_FAM_STM32L5) || \
defined(CPU_FAM_STM32U5) || defined(CPU_FAM_STM32MP1)
/* get all interrupts handled by this ISR */
uint32_t pending_rising_isr = (EXTI->RPR1 & EXTI_MASK);
uint32_t pending_falling_isr = (EXTI->FPR1 & EXTI_MASK);
/* clear by writing a 1 */
EXTI->RPR1 = pending_rising_isr;
EXTI->FPR1 = pending_falling_isr;
/* only generate interrupts against lines which have their IMR set */
uint32_t pending_isr = (pending_rising_isr | pending_falling_isr) & EXTI_REG_IMR;
#else
/* read all pending interrupts wired to isr_exti */
uint32_t pending_isr = (EXTI_REG_PR & EXTI_MASK);
/* clear by writing a 1 */
EXTI_REG_PR = pending_isr;
/* only generate soft interrupts against lines which have their IMR set */
pending_isr &= EXTI_REG_IMR;
#endif
/* iterate over all set bits */
uint8_t pin = 0;
while (pending_isr) {
pending_isr = bitarithm_test_and_clear(pending_isr, &pin);
isr_ctx[pin].cb(isr_ctx[pin].arg);
/* emulate level triggered IRQs by asserting the IRQ again in software, if needed */
if (level_triggered & (1UL << pin)) {
/* Trading a couple of CPU cycles to not having to store port connected to EXTI in RAM.
* A simple look up table would save ~6 instructions for the cost 64 byte or RAM. */
gpio_port_t port = GPIO_PORT(get_exti_port(pin));
uint32_t actual_level = gpio_ll_read(port) & (1UL << pin);
uint32_t trigger_level = EXTI_REG_RTSR & (1UL << pin);
if (actual_level == trigger_level) {
EXTI_REG_SWIER = 1UL << pin;
}
}
}
cortexm_isr_end();
}