1
0
mirror of https://github.com/RIOT-OS/RIOT.git synced 2024-12-29 04:50:03 +01:00
RIOT/sys/include/net/sock/ip.h
2022-05-10 09:24:56 +02:00

712 lines
28 KiB
C

/*
* Copyright (C) 2016 Alexander Aring <aar@pengutronix.de>
* Freie Universität Berlin
* HAW Hamburg
* Kaspar Schleiser <kaspar@schleiser.de>
*
* This file is subject to the terms and conditions of the GNU Lesser
* General Public License v2.1. See the file LICENSE in the top level
* directory for more details.
*/
/**
* @defgroup net_sock_ip Raw IPv4/IPv6 sock API
* @ingroup net_sock
* @brief Sock submodule for raw IPv4/IPv6
*
* How To Use
* ----------
* First you need to @ref including-modules "include" a module that implements
* this API in your application's Makefile. For example the implementation for
* @ref net_gnrc "GNRC" is called `gnrc_sock_ip`.
*
* ### A Simple IPv6 Server
*
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ {.c}
* #include <stdio.h>
*
* #include "net/protnum.h"
* #include "net/sock/ip.h"
*
* uint8_t buf[128];
*
* int main(void)
* {
* sock_ip_ep_t local = SOCK_IPV6_EP_ANY;
* sock_ip_t sock;
*
* if (sock_ip_create(&sock, &local, NULL, PROTNUM_IPV6_NONXT, 0) < 0) {
* puts("Error creating raw IP sock");
* return 1;
* }
*
* while (1) {
* sock_ip_ep_t remote;
* ssize_t res;
*
* if ((res = sock_ip_recv(&sock, buf, sizeof(buf), SOCK_NO_TIMEOUT,
* &remote)) >= 0) {
* puts("Received a message");
* if (sock_ip_send(&sock, buf, res, 0, &remote) < 0) {
* puts("Error sending reply");
* }
* }
* }
*
* return 0;
* }
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
*
* Above you see a simple IPv6 server. Don't forget to also
* @ref including-modules "include" the IPv6 module of your networking
* implementation (e.g. `gnrc_ipv6_default` for @ref net_gnrc "GNRC") and at
* least one network device.
*
* After including header files for the @ref net_af "address families",
* @ref net_protnum "protocol numbers" and the @ref net_sock_ip "raw `sock`s"
* themselves, we create some buffer space `buf` to store the data received by
* the server:
*
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ {.c}
* #include "net/af.h"
* #include "net/protnum.h"
* #include "net/sock/ip.h"
*
* uint8_t buf[128];
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
*
* To be able to listen for incoming packets we bind the `sock` by setting a
* local end point (even if we just state here, that we just want to bind it to
* any IPv6 address).
*
* We then proceed to create the `sock`. It is bound to `local` and listens for
* IPv6 packets with @ref ipv6_hdr_t::nh "next header field"
* @ref PROTNUM_IPV6_NONXT. Since we don't need any further configuration we set
* the flags to 0. In case of an error we stop the program:
*
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ {.c}
* sock_ip_ep_t local = SOCK_IPV6_EP_ANY;
* sock_ip_t sock;
*
* if (sock_ip_create(&sock, &local, NULL, PROTNUM_IPV6_NONXT, 0) < 0) {
* puts("Error creating raw IP sock");
* return 1;
* }
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
*
* The application then waits indefinitely for an incoming message in
* `buf` from `remote`. If we want to timeout this wait period we could
* alternatively set the `timeout` parameter of @ref sock_ip_recv() to a
* value `!= SOCK_NO_TIMEOUT`. If an error occurs on receive we just ignore it
* and continue looping.
*
* If we receive a message we use its `remote` to reply. Note since the `proto`
* was already set during @ref sock_ip_create() we can just leave `proto` for
* the @ref sock_ip_send() set to 0 (it is ignored by that function in that case
* anyway). In case of an error on send we print an according message:
*
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ {.c}
* while (1) {
* sock_ip_ep_t remote;
* ssize_t res;
*
* if ((res = sock_ip_recv(&sock, buf, sizeof(buf), SOCK_NO_TIMEOUT,
* &remote)) >= 0) {
* puts("Received a message");
* if (sock_ip_send(&sock, buf, res, 0, &remote) < 0) {
* puts("Error sending reply");
* }
* }
* }
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
*
* ### A Simple IPv6 Client
* There are two kinds of clients. Those that do expect a reply and those who
* don't. A client that does not require a reply is very simple to implement in
* one line:
*
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ {.c}
* res = sock_ip_send(NULL, data, data_len, PROTNUM, &remote);
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
*
* With `data` being the data sent, `data_len` the length of `data`, `PROTNUM`
* the next header number for the sent packet and `remote` the remote end point
* the packet that is to be sent.
*
* To see some other capabilities we look at a more complex example in form of
* the counter of the echo server above:
*
*
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ {.c}
* #include <stdio.h>
*
* #include "net/af.h"
* #include "net/protnum.h"
* #include "net/ipv6/addr.h"
* #include "net/sock/ip.h"
* #include "xtimer.h"
*
* uint8_t buf[7];
*
* int main(void)
* {
* sock_ip_ep_t local = SOCK_IPV6_EP_ANY;
* sock_ip_t sock;
*
* if (sock_ip_create(&sock, &local, NULL, PROTNUM_IPV6_NONXT, 0) < 0) {
* puts("Error creating raw IP sock");
* return 1;
* }
*
* while (1) {
* sock_ip_ep_t remote = { .family = AF_INET6 };
* ssize_t res;
*
* ipv6_addr_set_all_nodes_multicast((ipv6_addr_t *)&remote.addr.ipv6,
* IPV6_ADDR_MCAST_SCP_LINK_LOCAL);
*
* if (sock_ip_send(&sock, "Hello!", sizeof("Hello!"), 0, &remote) < 0) {
* puts("Error sending message");
* sock_ip_close(&sock);
* return 1;
* }
* if ((res = sock_ip_recv(&sock, buf, sizeof(buf), 1 * US_PER_SEC,
* NULL)) < 0) {
* if (res == -ETIMEDOUT) {
* puts("Timed out");
* }
* else {
* puts("Error receiving message");
* }
* }
* else {
* printf("Received message: \"");
* for (int i = 0; i < res; i++) {
* printf("%c", buf[i]);
* }
* printf("\"\n");
* }
* xtimer_sleep(1);
* }
*
* return 0;
* }
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
*
* Again: Don't forget to also @ref including-modules "include" the IPv6 module
* of your networking implementation (e.g. `gnrc_ipv6_default` for
* @ref net_gnrc "GNRC") and at least one network device.
*
* We first create again a `sock` with a local end point bound to any IPv6
* address. Note that we also could specify the remote end point here and not
* use it with @ref sock_ip_send().
*
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ {.c}
* sock_ip_ep_t local = SOCK_IPV6_EP_ANY;
* sock_ip_t sock;
*
* if (sock_ip_create(&sock, &local, NULL, PROTNUM_IPV6_NONXT, 0) < 0) {
* puts("Error creating raw IP sock");
* return 1;
* }
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
*
* We then create a remote end point for the [link-local all nodes multicast
* address](https://tools.ietf.org/html/rfc4291#page-16) (`ff02::1`) and send
* a "Hello!" message to that end point.
*
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ {.c}
* sock_ip_ep_t remote = { .family = AF_INET6 };
* ssize_t res;
*
* ipv6_addr_set_all_nodes_multicast((ipv6_addr_t *)&remote.addr.ipv6,
* IPV6_ADDR_MCAST_SCP_LINK_LOCAL);
*
* if (sock_ip_send(&sock, "Hello!", sizeof("Hello!"), 0, &remote) < 0) {
* puts("Error sending message");
* sock_ip_close(&sock);
* return 1;
* }
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
*
* We then wait a second for a reply and print it when it is received.
*
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ {.c}
* if ((res = sock_ip_recv(&sock, buf, sizeof(buf), 1 * US_PER_SEC,
* NULL)) < 0) {
* if (res == -ETIMEDOUT) {
* puts("Timed out");
* }
* else {
* puts("Error receiving message");
* }
* }
* else {
* printf("Received message: \"");
* for (int i = 0; i < res; i++) {
* printf("%c", buf[i]);
* }
* printf("\"\n");
* }
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
*
* Finally, we wait a second before sending out the next "Hello!" with
* `xtimer_sleep(1)`.
*
* @{
*
* @file
* @brief Raw IPv4/IPv6 sock definitions
*
* @author Alexander Aring <aar@pengutronix.de>
* @author Simon Brummer <simon.brummer@haw-hamburg.de>
* @author Cenk Gündoğan <mail@cgundogan.de>
* @author Peter Kietzmann <peter.kietzmann@haw-hamburg.de>
* @author Martine Lenders <m.lenders@fu-berlin.de>
* @author Kaspar Schleiser <kaspar@schleiser.de>
*/
#ifndef NET_SOCK_IP_H
#define NET_SOCK_IP_H
#include <errno.h>
#include <stdint.h>
#include <stdlib.h>
#include <sys/types.h>
/* net/sock/async/types.h included by net/sock.h needs to re-typedef the
* `sock_ip_t` to prevent cyclic includes */
#if defined (__clang__)
# pragma clang diagnostic push
# pragma clang diagnostic ignored "-Wtypedef-redefinition"
#endif
#include "net/sock.h"
#ifdef __cplusplus
extern "C" {
#endif
/**
* @brief Type for a raw IPv4/IPv6 sock object
*
* @note API implementors: `struct sock_ip` needs to be defined by
* implementation-specific `sock_types.h`.
*/
typedef struct sock_ip sock_ip_t;
#if defined (__clang__)
# pragma clang diagnostic pop
#endif
/**
* @brief Auxiliary data provided when receiving using an IP sock object
*/
typedef struct {
#if defined(MODULE_SOCK_AUX_LOCAL) || defined(DOXYGEN)
/**
* @brief The local address the packet was received on
*
* @see SOCK_AUX_GET_LOCAL
*/
sock_ip_ep_t local;
#endif /* MODULE_SOCK_AUX_ENDPOINT */
#if defined(MODULE_SOCK_AUX_TIMESTAMP) || defined(DOXYGEN)
/**
* @brief System time the packet was received
*
* @see SOCK_AUX_GET_TIMESTAMP
*/
uint64_t timestamp;
#endif /* MODULE_SOCK_AUX_TIMESTAP */
#if defined(MODULE_SOCK_AUX_RSSI) || defined(DOXYGEN)
/**
* @brief RSSI value of the received frame
*
* @see SOCK_AUX_GET_RSSI
*/
int16_t rssi;
#endif /* MODULE_SOCK_AUX_RSSI */
sock_aux_flags_t flags; /**< Flags used request information */
} sock_ip_aux_rx_t;
/**
* @brief Auxiliary data provided when sending using an IP sock object
*/
typedef struct {
#if defined(MODULE_SOCK_AUX_LOCAL) || defined(DOXYGEN)
/**
* @brief The local endpoint from which the datagram will be sent
*
* @see SOCK_AUX_SET_LOCAL
*/
sock_ip_ep_t local;
#endif /* MODULE_SOCK_AUX_ENDPOINT */
#if defined(MODULE_SOCK_AUX_TIMESTAMP) || defined(DOXYGEN)
/**
* @brief System time the packet was send
*
* Add @ref SOCK_AUX_GET_TIMESTAMP to the bitmask in
* @ref sock_ip_aux_tx_t::flags to request a transmission timestamp. This
* bit will be cleared by @ref sock_ip_send_aux if and only if the timestamp
* was provided. The module `sock_aux_timestamp` needs to be selected to use
* this. The timestamp refers to the transmission of start of frame
* delimiter or preamble of the frame carrying the IP packet and is given in
* nanoseconds since epoch, unless otherwise documented by the underlying
* implementation.
*/
uint64_t timestamp;
#endif /* MODULE_SOCK_AUX_TIMESTAP*/
sock_aux_flags_t flags; /**< Flags used request information */
} sock_ip_aux_tx_t;
/**
* @brief Creates a new raw IPv4/IPv6 sock object
*
* @pre `(sock != NULL)`
*
* @param[out] sock The resulting sock object.
* @param[in] local Local end point for the sock object.
* May be NULL. sock_ip_ep_t::netif must either be
* @ref SOCK_ADDR_ANY_NETIF or equal to sock_ip_ep_t::netif
* of @p remote if `remote != NULL`.
* If NULL @ref sock_ip_send() may bind implicitly.
* @param[in] remote Remote end point for the sock object.
* May be `NULL` but then the `remote` parameter of
* @ref sock_ip_send() may not be `NULL` or it will always
* error with return value -ENOTCONN.
* sock_ip_ep_t::port may not be 0 if `remote != NULL`.
* sock_ip_ep_t::netif must either be
* @ref SOCK_ADDR_ANY_NETIF or equal to sock_ip_ep_t::netif
* of @p local if `local != NULL`.
* @param[in] proto Protocol to use in the raw IPv4/IPv6 sock object
* (the `protocol` header field in IPv4 and the `next_header`
* field in IPv6).
* @param[in] flags Flags for the sock object. See also
* [sock flags](net_sock_flags). May be 0.
*
* @return 0 on success.
* @return -EADDRINUSE, if `local != NULL` and @p local is already used
* elsewhere
* @return -EAFNOSUPPORT, if `local != NULL` or `remote != NULL` and
* sock_ip_ep_t::family of @p local or @p remote is not supported.
* @return -EINVAL, if sock_ip_ep_t::addr of @p remote is an invalid address.
* @return -EINVAL, if sock_ip_ep_t::netif of @p local or @p remote are not
* valid interfaces or contradict each other
* (i.e. `(local->netif != remote->netif) &&
* ((local->netif != SOCK_ADDR_ANY_NETIF) ||
* (remote->netif != SOCK_ADDR_ANY_NETIF))` if neither is `NULL`).
* @return -ENOMEM, if not enough resources can be provided for `sock` to be
* created.
* @return -EPROTONOSUPPORT, if `local != NULL` or `remote != NULL` and
* proto is not supported by sock_ip_ep_t::family of @p local or @p
* remote.
*/
int sock_ip_create(sock_ip_t *sock, const sock_ip_ep_t *local,
const sock_ip_ep_t *remote, uint8_t proto, uint16_t flags);
/**
* @brief Closes a raw IPv4/IPv6 sock object
*
* @pre `(sock != NULL)`
*
* @param[in] sock A raw IPv4/IPv6 sock object.
*/
void sock_ip_close(sock_ip_t *sock);
/**
* @brief Gets the local end point of a raw IPv4/IPv6 sock object
*
* This gets the local end point of a raw IPv4/IPv6 sock object. Note that this
* might not be the same end point you added in @ref sock_ip_create(), but an
* end point more suitable for the implementation. Examples for this might be
* that if sock_ip_ep_t::netif is given in @ref sock_ip_create(), the
* implementation might choose to return the address on this interface the
* @p sock is bound to in @p ep's sock_ip_ep_t::addr.
*
* @pre `(sock != NULL) && (ep != NULL)`
*
* @param[in] sock A raw IPv4/IPv6 sock object.
* @param[out] ep The local end point.
*
* @return 0 on success.
* @return -EADDRNOTAVAIL, when @p sock has no end point bound to it.
*/
int sock_ip_get_local(sock_ip_t *sock, sock_ip_ep_t *ep);
/**
* @brief Gets the remote end point of a raw IPv4/IPv6 sock object
*
* @pre `(sock != NULL) && (ep != NULL)`
*
* This gets the remote end point of a raw IPv4/IPv6 sock object. Note that this
* might not be the same end point you added in @ref sock_ip_create(), but an
* end point more suitable for the implementation. Examples for this might be
* that if sock_ip_ep_t::netif is given in @ref sock_ip_create(), the
* implementation might choose to return the address on this interface the
* @p sock is bound to in @p ep's sock_ip_ep_t::addr.
*
* @param[in] sock A raw IPv4/IPv6 sock object.
* @param[out] ep The remote end point.
*
* @return 0 on success.
* @return -ENOTCONN, when @p sock has no remote end point bound to it.
*/
int sock_ip_get_remote(sock_ip_t *sock, sock_ip_ep_t *ep);
/**
* @brief Receives a message over IPv4/IPv6 from remote end point
*
* @pre `(sock != NULL) && (data != NULL) && (max_len > 0)`
*
* @param[in] sock A raw IPv4/IPv6 sock object.
* @param[out] data Pointer where the received data should be stored.
* @param[in] max_len Maximum space available at @p data.
* @param[in] timeout Timeout for receive in microseconds.
* If 0 and no data is available, the function returns
* immediately.
* May be @ref SOCK_NO_TIMEOUT for no timeout (wait until
* data is available).
* @param[out] remote Remote end point of the received data.
* May be NULL, if it is not required by the application.
* @param[out] aux Auxiliary data of the reception.
* May be NULL, if it is not required by the application.
*
* @note Function blocks if no packet is currently waiting.
*
* @return The number of bytes received on success.
* @return 0, if no received data is available, but everything is in order.
* @return -EADDRNOTAVAIL, if local of @p sock is not given.
* @return -EAGAIN, if @p timeout is `0` and no data is available.
* @return -EINVAL, if @p remote is invalid or @p sock is not properly
* initialized (or closed while sock_ip_recv() blocks).
* @return -ENOBUFS, if buffer space is not large enough to store received
* data.
* @return -ENOMEM, if no memory was available to receive @p data.
* @return -EPROTO, if source address of received packet did not equal
* the remote of @p sock.
* @return -ETIMEDOUT, if @p timeout expired.
*/
ssize_t sock_ip_recv_aux(sock_ip_t *sock, void *data, size_t max_len,
uint32_t timeout, sock_ip_ep_t *remote,
sock_ip_aux_rx_t *aux);
/**
* @brief Receives a message over IPv4/IPv6 from remote end point
*
* @pre `(sock != NULL) && (data != NULL) && (max_len > 0)`
*
* @param[in] sock A raw IPv4/IPv6 sock object.
* @param[out] data Pointer where the received data should be stored.
* @param[in] max_len Maximum space available at @p data.
* @param[in] timeout Timeout for receive in microseconds.
* If 0 and no data is available, the function returns
* immediately.
* May be @ref SOCK_NO_TIMEOUT for no timeout (wait until
* data is available).
* @param[out] remote Remote end point of the received data.
* May be NULL, if it is not required by the application.
*
* @note Function blocks if no packet is currently waiting.
*
* @return The number of bytes received on success.
* @return 0, if no received data is available, but everything is in order.
* @return -EADDRNOTAVAIL, if local of @p sock is not given.
* @return -EAGAIN, if @p timeout is `0` and no data is available.
* @return -EINVAL, if @p remote is invalid or @p sock is not properly
* initialized (or closed while sock_ip_recv() blocks).
* @return -ENOBUFS, if buffer space is not large enough to store received
* data.
* @return -ENOMEM, if no memory was available to receive @p data.
* @return -EPROTO, if source address of received packet did not equal
* the remote of @p sock.
* @return -ETIMEDOUT, if @p timeout expired.
*/
static inline ssize_t sock_ip_recv(sock_ip_t *sock, void *data, size_t max_len,
uint32_t timeout, sock_ip_ep_t *remote)
{
return sock_ip_recv_aux(sock, data, max_len, timeout, remote, NULL);
}
/**
* @brief Provides stack-internal buffer space containing an IPv4/IPv6
* message from remote end point
*
* @pre `(sock != NULL) && (data != NULL) && (buf_ctx != NULL)`
*
* @param[in] sock A raw IPv4/IPv6 sock object.
* @param[out] data Pointer to a stack-internal buffer space containing the
* received data.
* @param[in,out] buf_ctx Stack-internal buffer context. If it points to a
* `NULL` pointer, the stack returns a new buffer space
* for a new packet. If it does not point to a `NULL`
* pointer, an existing context is assumed to get a next
* segment in a buffer.
* @param[in] timeout Timeout for receive in microseconds.
* If 0 and no data is available, the function returns
* immediately.
* May be @ref SOCK_NO_TIMEOUT for no timeout (wait until
* data is available).
* @param[out] remote Remote end point of the received data.
* May be NULL, if it is not required by the application.
* @param[out] aux Auxiliary data of the reception.
* May be NULL, if it is not required by the application.
*
* @experimental This function is quite new, not implemented for all stacks
* yet, and may be subject to sudden API changes. Do not use in
* production if this is unacceptable.
*
* @note Function blocks if no packet is currently waiting.
*
* @return The number of bytes received on success. May not be the complete
* payload. Continue calling with the returned `buf_ctx` to get more
* buffers until result is 0 or an error.
* @return 0, if no received data is available, but everything is in order.
* If @p buf_ctx was provided, it was released.
* @return -EADDRNOTAVAIL, if local of @p sock is not given.
* @return -EAGAIN, if @p timeout is `0` and no data is available.
* @return -EINVAL, if @p remote is invalid or @p sock is not properly
* initialized (or closed while sock_ip_recv() blocks).
* @return -ENOMEM, if no memory was available to receive @p data.
* @return -EPROTO, if source address of received packet did not equal
* the remote of @p sock.
* @return -ETIMEDOUT, if @p timeout expired.
*/
ssize_t sock_ip_recv_buf_aux(sock_ip_t *sock, void **data, void **buf_ctx,
uint32_t timeout, sock_ip_ep_t *remote,
sock_ip_aux_rx_t *aux);
/**
* @brief Provides stack-internal buffer space containing an IPv4/IPv6
* message from remote end point
*
* @pre `(sock != NULL) && (data != NULL) && (buf_ctx != NULL)`
*
* @param[in] sock A raw IPv4/IPv6 sock object.
* @param[out] data Pointer to a stack-internal buffer space containing the
* received data.
* @param[in,out] buf_ctx Stack-internal buffer context. If it points to a
* `NULL` pointer, the stack returns a new buffer space
* for a new packet. If it does not point to a `NULL`
* pointer, an existing context is assumed to get a next
* segment in a buffer.
* @param[in] timeout Timeout for receive in microseconds.
* If 0 and no data is available, the function returns
* immediately.
* May be @ref SOCK_NO_TIMEOUT for no timeout (wait until
* data is available).
* @param[out] remote Remote end point of the received data.
* May be NULL, if it is not required by the application.
*
* @experimental This function is quite new, not implemented for all stacks
* yet, and may be subject to sudden API changes. Do not use in
* production if this is unacceptable.
*
* @note Function blocks if no packet is currently waiting.
*
* @return The number of bytes received on success. May not be the complete
* payload. Continue calling with the returned `buf_ctx` to get more
* buffers until result is 0 or an error.
* @return 0, if no received data is available, but everything is in order.
* If @p buf_ctx was provided, it was released.
* @return -EADDRNOTAVAIL, if local of @p sock is not given.
* @return -EAGAIN, if @p timeout is `0` and no data is available.
* @return -EINVAL, if @p remote is invalid or @p sock is not properly
* initialized (or closed while sock_ip_recv() blocks).
* @return -ENOMEM, if no memory was available to receive @p data.
* @return -EPROTO, if source address of received packet did not equal
* the remote of @p sock.
* @return -ETIMEDOUT, if @p timeout expired.
*/
static inline ssize_t sock_ip_recv_buf(sock_ip_t *sock,
void **data, void **buf_ctx,
uint32_t timeout, sock_ip_ep_t *remote)
{
return sock_ip_recv_buf_aux(sock, data, buf_ctx, timeout, remote, NULL);
}
/**
* @brief Sends a message over IPv4/IPv6 to remote end point
*
* @pre `((sock != NULL || remote != NULL)) && (if (len != 0): (data != NULL))`
*
* @param[in] sock A raw IPv4/IPv6 sock object. May be NULL.
* A sensible local end point should be selected by the
* implementation in that case.
* @param[in] data Pointer where the received data should be stored.
* May be `NULL` if `len == 0`.
* @param[in] len Maximum space available at @p data.
* @param[in] proto Protocol to use in the packet sent, in case
* `sock == NULL`. If `sock != NULL` this parameter will be
* ignored.
* @param[in] remote Remote end point for the sent data.
* May be `NULL`, if @p sock has a remote end point.
* sock_ip_ep_t::family may be AF_UNSPEC, if local
* end point of @p sock provides this information.
* @param[out] aux Auxiliary data for the transmission.
* May be `NULL` if not needed by the caller.
*
* @return The number of bytes sent on success.
* @return -EAFNOSUPPORT, if `remote != NULL` and sock_ip_ep_t::family of
* @p remote is != AF_UNSPEC and not supported.
* @return -EINVAL, if sock_ip_ep_t::addr of @p remote is an invalid address.
* @return -EINVAL, if sock_ip_ep_t::netif of @p remote is not a
* valid interface or contradicts the local interface of @p sock.
* @return -EHOSTUNREACH, if @p remote or remote end point of @p sock is not
* reachable.
* @return -ENOMEM, if no memory was available to send @p data.
* @return -ENOTCONN, if `remote == NULL`, but @p sock has no remote end point.
* @return -EPROTOTYPE, if `sock == NULL` and @p proto is not by
* sock_ip_ep_t::family of @p remote.
*/
ssize_t sock_ip_send_aux(sock_ip_t *sock, const void *data, size_t len,
uint8_t proto, const sock_ip_ep_t *remote,
sock_ip_aux_tx_t *aux);
/**
* @brief Sends a message over IPv4/IPv6 to remote end point
*
* @pre `((sock != NULL || remote != NULL)) && (if (len != 0): (data != NULL))`
*
* @param[in] sock A raw IPv4/IPv6 sock object. May be NULL.
* A sensible local end point should be selected by the
* implementation in that case.
* @param[in] data Pointer where the received data should be stored.
* May be `NULL` if `len == 0`.
* @param[in] len Maximum space available at @p data.
* @param[in] proto Protocol to use in the packet sent, in case
* `sock == NULL`. If `sock != NULL` this parameter will be
* ignored.
* @param[in] remote Remote end point for the sent data.
* May be `NULL`, if @p sock has a remote end point.
* sock_ip_ep_t::family may be AF_UNSPEC, if local
* end point of @p sock provides this information.
*
* @return The number of bytes sent on success.
* @return -EAFNOSUPPORT, if `remote != NULL` and sock_ip_ep_t::family of
* @p remote is != AF_UNSPEC and not supported.
* @return -EINVAL, if sock_ip_ep_t::addr of @p remote is an invalid address.
* @return -EINVAL, if sock_ip_ep_t::netif of @p remote is not a
* valid interface or contradicts the local interface of @p sock.
* @return -EHOSTUNREACH, if @p remote or remote end point of @p sock is not
* reachable.
* @return -ENOMEM, if no memory was available to send @p data.
* @return -ENOTCONN, if `remote == NULL`, but @p sock has no remote end point.
* @return -EPROTOTYPE, if `sock == NULL` and @p proto is not by
* sock_ip_ep_t::family of @p remote.
*/
static inline ssize_t sock_ip_send(sock_ip_t *sock,
const void *data, size_t len,
uint8_t proto, const sock_ip_ep_t *remote)
{
return sock_ip_send_aux(sock, data, len, proto, remote, NULL);
}
#include "sock_types.h"
#ifdef __cplusplus
}
#endif
#endif /* NET_SOCK_IP_H */
/** @} */