1
0
mirror of https://github.com/RIOT-OS/RIOT.git synced 2024-12-29 04:50:03 +01:00
RIOT/boards/mulle/include/periph_conf.h
Joakim Nohlgård dd2fad6b9b kinetis: ADC: Add hardware averaging configuration
This allows a board configuration to select which kind of averaging
should be applied to the pin instead of always using 32 sample average.
Very high impedance sources may need to disable hardware averaging in
order to give correct values, the on-chip temperature sensor is one such
signal source.
2018-09-12 16:32:48 +02:00

368 lines
12 KiB
C

/*
* Copyright (C) 2015 Eistec AB
* 2016 Freie Universität Berlin
*
* This file is subject to the terms and conditions of the GNU Lesser General
* Public License v2.1. See the file LICENSE in the top level directory for more
* details.
*/
/**
* @ingroup boards_mulle
* @{
*
* @file
* @name Peripheral MCU configuration for the Eistec Mulle
*
* @author Joakim Nohlgård <joakim.nohlgard@eistec.se>
* @author Hauke Petersen <hauke.petersen@fu-berlin.de>
*/
#ifndef PERIPH_CONF_H
#define PERIPH_CONF_H
#include "periph_cpu.h"
#ifdef __cplusplus
extern "C"
{
#endif
/**
* @name Clock system configuration
* @{
*/
/* The crystal on the Mulle is designed for 12.5 pF load capacitance. According
* to the data sheet, the K60 will have a 5 pF parasitic capacitance on the
* XTAL32/EXTAL32 connection. The board traces might give some minor parasitic
* capacitance as well. */
/* Use the equation
* CL = (C1 * C2) / (C1 + C2) + Cstray
* with C1 == C2:
* C1 = 2 * (CL - Cstray)
*/
/* enable 14pF load capacitor which will yield a crystal load capacitance of 12 pF */
#define RTC_LOAD_CAP_BITS (RTC_CR_SC8P_MASK | RTC_CR_SC4P_MASK | RTC_CR_SC2P_MASK)
static const clock_config_t clock_config = {
/*
* This configuration results in the system running from the FLL output with
* the following clock frequencies:
* Core: 48 MHz
* Bus: 48 MHz
* Flex: 24 MHz
* Flash: 24 MHz
*/
/* The board has a 16 MHz crystal, though it is not used in this configuration */
/* This configuration uses the RTC crystal to provide the base clock, it
* should have better accuracy than the internal slow clock, and lower power
* consumption than using the 16 MHz crystal and the OSC0 module */
.clkdiv1 = SIM_CLKDIV1_OUTDIV1(0) | SIM_CLKDIV1_OUTDIV2(0) |
SIM_CLKDIV1_OUTDIV3(1) | SIM_CLKDIV1_OUTDIV4(1),
.rtc_clc = RTC_LOAD_CAP_BITS,
.osc32ksel = SIM_SOPT1_OSC32KSEL(2),
.clock_flags =
/* no OSC0_EN, the RTC module provides the clock input signal for the FLL */
KINETIS_CLOCK_RTCOSC_EN |
KINETIS_CLOCK_USE_FAST_IRC |
0,
.default_mode = KINETIS_MCG_MODE_FEE,
.erc_range = KINETIS_MCG_ERC_RANGE_LOW, /* Input clock is 32768 Hz */
/* 16 pF capacitors yield ca 10 pF load capacitance as required by the
* onboard xtal, not used when OSC0 is disabled */
.osc_clc = OSC_CR_SC16P_MASK,
.oscsel = MCG_C7_OSCSEL(1), /* Use RTC for external clock */
.fcrdiv = MCG_SC_FCRDIV(0), /* Fast IRC divide by 1 => 4 MHz */
.fll_frdiv = MCG_C1_FRDIV(0b000), /* Divide by 1 => FLL input 32768 Hz */
.fll_factor_fei = KINETIS_MCG_FLL_FACTOR_1464, /* FLL freq = 48 MHz */
.fll_factor_fee = KINETIS_MCG_FLL_FACTOR_1464, /* FLL freq = 48 MHz */
/* PLL is unavailable when using a 32768 Hz source clock, so the
* configuration below can only be used if the above config is modified to
* use the 16 MHz crystal instead of the RTC. */
.pll_prdiv = MCG_C5_PRDIV0(0b00111), /* Divide by 8 */
.pll_vdiv = MCG_C6_VDIV0(0b01100), /* Multiply by 36 => PLL freq = 72 MHz */
};
#define CLOCK_CORECLOCK (48000000ul)
#define CLOCK_BUSCLOCK (CLOCK_CORECLOCK / 1)
/** @} */
/**
* @name Timer configuration
* @{
*/
#define PIT_NUMOF (2U)
#define PIT_CONFIG { \
{ \
.prescaler_ch = 0, \
.count_ch = 1, \
}, \
{ \
.prescaler_ch = 2, \
.count_ch = 3, \
}, \
}
#define LPTMR_NUMOF (1U)
#define LPTMR_CONFIG { \
{ \
.dev = LPTMR0, \
.irqn = LPTMR0_IRQn, \
.src = 2, \
.base_freq = 32768u, \
} \
}
#define TIMER_NUMOF ((PIT_NUMOF) + (LPTMR_NUMOF))
#define PIT_BASECLOCK (CLOCK_BUSCLOCK)
#define PIT_ISR_0 isr_pit1
#define PIT_ISR_1 isr_pit3
#define LPTMR_ISR_0 isr_lptmr0
/** @} */
/**
* @name UART configuration
* @{
*/
static const uart_conf_t uart_config[] = {
{
.dev = UART0,
.freq = CLOCK_CORECLOCK,
.pin_rx = GPIO_PIN(PORT_A, 15),
.pin_tx = GPIO_PIN(PORT_A, 14),
.pcr_rx = PORT_PCR_MUX(3),
.pcr_tx = PORT_PCR_MUX(3),
.irqn = UART0_RX_TX_IRQn,
.scgc_addr = &SIM->SCGC4,
.scgc_bit = SIM_SCGC4_UART0_SHIFT,
.mode = UART_MODE_8N1,
.type = KINETIS_UART,
},
{
.dev = UART1,
.freq = CLOCK_CORECLOCK,
.pin_rx = GPIO_PIN(PORT_C, 3),
.pin_tx = GPIO_PIN(PORT_C, 4),
.pcr_rx = PORT_PCR_MUX(3),
.pcr_tx = PORT_PCR_MUX(3),
.irqn = UART1_RX_TX_IRQn,
.scgc_addr = &SIM->SCGC4,
.scgc_bit = SIM_SCGC4_UART1_SHIFT,
.mode = UART_MODE_8N1,
.type = KINETIS_UART,
},
};
#define UART_0_ISR (isr_uart0_rx_tx)
#define UART_1_ISR (isr_uart1_rx_tx)
#define UART_NUMOF (sizeof(uart_config) / sizeof(uart_config[0]))
/** @} */
/**
* @name ADC configuration
* @{
*/
static const adc_conf_t adc_config[] = {
/* internal: temperature sensor */
/* The temperature sensor has a very high output impedance, it must not be
* sampled using hardware averaging, or the sampled values will be garbage */
[ 0] = { .dev = ADC1, .pin = GPIO_UNDEF, .chan = 26, .avg = ADC_AVG_NONE },
/* internal: band gap */
[ 1] = { .dev = ADC1, .pin = GPIO_UNDEF, .chan = 27, .avg = ADC_AVG_MAX },
/* internal: V_REFSH */
[ 2] = { .dev = ADC1, .pin = GPIO_UNDEF, .chan = 29, .avg = ADC_AVG_MAX },
/* internal: V_REFSL */
[ 3] = { .dev = ADC1, .pin = GPIO_UNDEF, .chan = 30, .avg = ADC_AVG_MAX },
/* internal: DAC0 module output level */
[ 4] = { .dev = ADC1, .pin = GPIO_UNDEF, .chan = 23, .avg = ADC_AVG_MAX },
/* internal: VREF module output level */
[ 5] = { .dev = ADC1, .pin = GPIO_UNDEF, .chan = 18, .avg = ADC_AVG_MAX },
/* on board connection to Mulle Vbat/2 on PGA1_DP pin */
[ 6] = { .dev = ADC1, .pin = GPIO_UNDEF, .chan = 0, .avg = ADC_AVG_MAX },
/* on board connection to Mulle Vchr/2 on PGA1_DM pin */
[ 7] = { .dev = ADC1, .pin = GPIO_UNDEF, .chan = 19, .avg = ADC_AVG_MAX },
/* expansion port PGA0_DP pin */
[ 8] = { .dev = ADC0, .pin = GPIO_UNDEF, .chan = 0, .avg = ADC_AVG_MAX },
/* expansion port PGA0_DM pin */
[ 9] = { .dev = ADC0, .pin = GPIO_UNDEF, .chan = 19, .avg = ADC_AVG_MAX },
/* expansion port PTA17 */
[10] = { .dev = ADC1, .pin = GPIO_PIN(PORT_A, 17), .chan = 17, .avg = ADC_AVG_MAX },
/* expansion port PTB0 */
[11] = { .dev = ADC1, .pin = GPIO_PIN(PORT_B, 0), .chan = 8, .avg = ADC_AVG_MAX },
/* expansion port PTC0 */
[12] = { .dev = ADC0, .pin = GPIO_PIN(PORT_C, 0), .chan = 14, .avg = ADC_AVG_MAX },
/* expansion port PTC8 */
[13] = { .dev = ADC1, .pin = GPIO_PIN(PORT_C, 8), .chan = 4, .avg = ADC_AVG_MAX },
/* expansion port PTC9 */
[14] = { .dev = ADC1, .pin = GPIO_PIN(PORT_C, 9), .chan = 5, .avg = ADC_AVG_MAX },
/* expansion port PTC10 */
[15] = { .dev = ADC1, .pin = GPIO_PIN(PORT_C, 10), .chan = 6, .avg = ADC_AVG_MAX },
/* expansion port PTC11 */
[16] = { .dev = ADC1, .pin = GPIO_PIN(PORT_C, 11), .chan = 7, .avg = ADC_AVG_MAX },
};
#define ADC_NUMOF (sizeof(adc_config) / sizeof(adc_config[0]))
/*
* K60D ADC reference settings:
* 0: VREFH/VREFL external pin pair
* 1: VREF_OUT internal 1.2 V reference (VREF module must be enabled)
* 2-3: reserved
*/
#define ADC_REF_SETTING 0
/** @} */
/**
* @name DAC configuration
* @{
*/
static const dac_conf_t dac_config[] = {
{
.dev = DAC0,
.scgc_addr = &SIM->SCGC2,
.scgc_bit = SIM_SCGC2_DAC0_SHIFT
}
};
#define DAC_NUMOF (sizeof(dac_config) / sizeof(dac_config[0]))
/** @} */
/**
* @name PWM configuration
* @{
*/
static const pwm_conf_t pwm_config[] = {
{
.ftm = FTM0,
.chan = {
{ .pin = GPIO_PIN(PORT_C, 1), .af = 4, .ftm_chan = 0 },
{ .pin = GPIO_PIN(PORT_C, 2), .af = 4, .ftm_chan = 1 },
{ .pin = GPIO_UNDEF, .af = 0, .ftm_chan = 0 },
{ .pin = GPIO_UNDEF, .af = 0, .ftm_chan = 0 }
},
.chan_numof = 2,
.ftm_num = 0
},
{
.ftm = FTM1,
.chan = {
{ .pin = GPIO_PIN(PORT_A, 12), .af = 3, .ftm_chan = 0 },
{ .pin = GPIO_PIN(PORT_A, 13), .af = 3, .ftm_chan = 1 },
{ .pin = GPIO_UNDEF, .af = 0, .ftm_chan = 0 },
{ .pin = GPIO_UNDEF, .af = 0, .ftm_chan = 0 }
},
.chan_numof = 2,
.ftm_num = 1
}
};
#define PWM_NUMOF (sizeof(pwm_config) / sizeof(pwm_config[0]))
/** @} */
/**
* @name SPI configuration
*
* Clock configuration values based on the configured 47988736Hz module clock.
*
* Auto-generated by:
* cpu/kinetis/dist/calc_spi_scalers/calc_spi_scalers.c
*
* @{
*/
static const uint32_t spi_clk_config[] = {
(
SPI_CTAR_PBR(0) | SPI_CTAR_BR(8) | /* -> 93728Hz */
SPI_CTAR_PCSSCK(0) | SPI_CTAR_CSSCK(8) |
SPI_CTAR_PASC(0) | SPI_CTAR_ASC(8) |
SPI_CTAR_PDT(0) | SPI_CTAR_DT(8)
),
(
SPI_CTAR_PBR(0) | SPI_CTAR_BR(6) | /* -> 374912Hz */
SPI_CTAR_PCSSCK(0) | SPI_CTAR_CSSCK(6) |
SPI_CTAR_PASC(0) | SPI_CTAR_ASC(6) |
SPI_CTAR_PDT(0) | SPI_CTAR_DT(6)
),
(
SPI_CTAR_PBR(1) | SPI_CTAR_BR(4) | /* -> 999765Hz */
SPI_CTAR_PCSSCK(1) | SPI_CTAR_CSSCK(3) |
SPI_CTAR_PASC(1) | SPI_CTAR_ASC(3) |
SPI_CTAR_PDT(1) | SPI_CTAR_DT(3)
),
(
SPI_CTAR_PBR(2) | SPI_CTAR_BR(0) | /* -> 4798873Hz */
SPI_CTAR_PCSSCK(2) | SPI_CTAR_CSSCK(0) |
SPI_CTAR_PASC(2) | SPI_CTAR_ASC(0) |
SPI_CTAR_PDT(2) | SPI_CTAR_DT(0)
),
(
SPI_CTAR_PBR(1) | SPI_CTAR_BR(0) | /* -> 7998122Hz */
SPI_CTAR_PCSSCK(1) | SPI_CTAR_CSSCK(0) |
SPI_CTAR_PASC(1) | SPI_CTAR_ASC(0) |
SPI_CTAR_PDT(1) | SPI_CTAR_DT(0)
)
};
static const spi_conf_t spi_config[] = {
{
.dev = SPI0,
.pin_miso = GPIO_PIN(PORT_D, 3),
.pin_mosi = GPIO_PIN(PORT_D, 2),
.pin_clk = GPIO_PIN(PORT_D, 1),
.pin_cs = {
GPIO_PIN(PORT_D, 0),
GPIO_PIN(PORT_D, 4),
GPIO_PIN(PORT_D, 5),
GPIO_PIN(PORT_D, 6),
GPIO_UNDEF
},
.pcr = GPIO_AF_2,
.simmask = SIM_SCGC6_SPI0_MASK
},
{
.dev = SPI1,
.pin_miso = GPIO_PIN(PORT_E, 3),
.pin_mosi = GPIO_PIN(PORT_E, 1),
.pin_clk = GPIO_PIN(PORT_E, 2),
.pin_cs = {
GPIO_PIN(PORT_E, 4),
GPIO_UNDEF,
GPIO_UNDEF,
GPIO_UNDEF,
GPIO_UNDEF
},
.pcr = GPIO_AF_2,
.simmask = SIM_SCGC6_SPI1_MASK
}
};
#define SPI_NUMOF (sizeof(spi_config) / sizeof(spi_config[0]))
/** @} */
/**
* @name I2C configuration
* @{
*/
static const i2c_conf_t i2c_config[] = {
{
.i2c = I2C0,
.scl_pin = GPIO_PIN(PORT_B, 2),
.sda_pin = GPIO_PIN(PORT_B, 1),
.freq = CLOCK_BUSCLOCK,
.speed = I2C_SPEED_FAST,
.irqn = I2C0_IRQn,
.scl_pcr = (PORT_PCR_MUX(2) | PORT_PCR_ODE_MASK),
.sda_pcr = (PORT_PCR_MUX(2) | PORT_PCR_ODE_MASK),
},
};
#define I2C_NUMOF (sizeof(i2c_config) / sizeof(i2c_config[0]))
#define I2C_0_ISR (isr_i2c0)
#define I2C_1_ISR (isr_i2c1)
/** @} */
#ifdef __cplusplus
}
#endif
#endif /* PERIPH_CONF_H */
/** @} */