1
0
mirror of https://github.com/RIOT-OS/RIOT.git synced 2024-12-29 04:50:03 +01:00
RIOT/drivers/dose/dose.c
Frederik Haxel ec7fe8d598 drivers: Use size_t print format specifier
Co-authored-by: Marian Buschsieweke <marian.buschsieweke@posteo.net>
2023-12-21 12:02:28 +01:00

811 lines
22 KiB
C

/*
* Copyright (C) 2019 Juergen Fitschen <me@jue.yt>
*
* This file is subject to the terms and conditions of the GNU Lesser
* General Public License v2.1. See the file LICENSE in the top level
* directory for more details.
*/
/**
* @ingroup drivers_dose
* @{
*
* @file
* @brief Implementation of the Differentially Operated Serial Ethernet driver
*
* @author Juergen Fitschen <me@jue.yt>
* Benjamin Valentin <benjamin.valentin@ml-pa.com>
* @}
*/
#include <assert.h>
#include <string.h>
#include "board.h"
#include "dose.h"
#include "random.h"
#include "irq.h"
#include "periph/timer.h"
#include "checksum/crc16_ccitt.h"
#include "net/eui_provider.h"
#include "net/netdev/eth.h"
#include "timex.h"
#define ENABLE_DEBUG 0
#include "debug.h"
#if !defined(DOSE_TIMER_DEV) && IS_ACTIVE(MODULE_DOSE_WATCHDOG)
#error "DOSE_TIMER_DEV needs to be set by the board"
#endif
static dose_signal_t state_transit_blocked(dose_t *ctx, dose_signal_t signal);
static dose_signal_t state_transit_idle(dose_t *ctx, dose_signal_t signal);
static dose_signal_t state_transit_recv(dose_t *ctx, dose_signal_t signal);
static dose_signal_t state_transit_send(dose_t *ctx, dose_signal_t signal);
static void state(dose_t *ctx, dose_signal_t src);
static void _isr_uart(void *arg, uint8_t c);
static void _isr_gpio(void *arg);
static void _isr_ztimer(void *arg);
static void clear_recv_buf(dose_t *ctx);
static void _isr(netdev_t *netdev);
static int _recv(netdev_t *dev, void *buf, size_t len, void *info);
static uint8_t wait_for_state(dose_t *ctx, uint8_t state);
static int send_octet(dose_t *ctx, uint8_t c);
static int _send(netdev_t *dev, const iolist_t *iolist);
static int _get(netdev_t *dev, netopt_t opt, void *value, size_t max_len);
static int _set(netdev_t *dev, netopt_t opt, const void *value, size_t len);
static int _init(netdev_t *dev);
static void _poweron(dose_t *dev);
static void _poweroff(dose_t *dev, dose_state_t sleep_state);
static void _crc_cb(void *ctx, uint8_t *data, size_t len)
{
uint16_t *crc = ctx;
*crc = crc16_ccitt_false_update(*crc, data, len);
}
static void _init_standby(dose_t *ctx, const dose_params_t *params)
{
ctx->standby_pin = params->standby_pin;
if (gpio_is_valid(ctx->standby_pin) &&
gpio_init(ctx->standby_pin, GPIO_OUT)) {
gpio_clear(ctx->standby_pin);
}
}
static void _init_sense(dose_t *ctx, const dose_params_t *params)
{
#ifdef MODULE_PERIPH_UART_RXSTART_IRQ
(void)params;
uart_rxstart_irq_configure(ctx->uart, _isr_gpio, ctx);
#else
ctx->sense_pin = params->sense_pin;
if (gpio_is_valid(ctx->sense_pin)) {
gpio_init_int(ctx->sense_pin, GPIO_IN, GPIO_FALLING, _isr_gpio, ctx);
gpio_irq_disable(ctx->sense_pin);
}
#endif
}
static inline void _enable_sense(dose_t *ctx)
{
#ifdef MODULE_PERIPH_UART_RXSTART_IRQ
uart_rxstart_irq_enable(ctx->uart);
#else
if (gpio_is_valid(ctx->sense_pin)) {
gpio_irq_enable(ctx->sense_pin);
}
#endif
}
static inline void _disable_sense(dose_t *ctx)
{
#ifdef MODULE_PERIPH_UART_RXSTART_IRQ
uart_rxstart_irq_disable(ctx->uart);
#else
if (gpio_is_valid(ctx->sense_pin)) {
gpio_irq_disable(ctx->sense_pin);
}
#endif
}
#ifdef MODULE_DOSE_WATCHDOG
static unsigned _watchdog_users;
static dose_t *_dose_base;
static uint8_t _dose_numof;
static inline void _watchdog_start(void)
{
if (_watchdog_users) {
return;
}
_watchdog_users++;
timer_start(DOSE_TIMER_DEV);
}
static inline void _watchdog_stop(void)
{
if (_watchdog_users == 0 || --_watchdog_users) {
return;
}
timer_stop(DOSE_TIMER_DEV);
}
static void _dose_watchdog_cb(void *arg, int chan)
{
(void) chan;
(void) arg;
for (unsigned i = 0; i < _dose_numof; ++i) {
dose_t *ctx = &_dose_base[i];
switch (ctx->state) {
case DOSE_STATE_RECV:
if (ctx->recv_buf_ptr_last != ctx->rb.cur) {
ctx->recv_buf_ptr_last = ctx->rb.cur;
break;
}
if (ctx->flags & DOSE_FLAG_RECV_BUF_DIRTY) {
break;
}
DEBUG_PUTS("timeout");
state(&_dose_base[i], DOSE_SIGNAL_ZTIMER);
break;
default:
break;
}
}
}
static void _watchdog_init(unsigned timeout_us)
{
timer_init(DOSE_TIMER_DEV, US_PER_SEC, _dose_watchdog_cb, NULL);
timer_set_periodic(DOSE_TIMER_DEV, 0, timeout_us,
TIM_FLAG_RESET_ON_MATCH | TIM_FLAG_SET_STOPPED);
}
#else
static inline void _watchdog_start(void) {}
static inline void _watchdog_stop(void) {}
#endif
static dose_signal_t state_transit_blocked(dose_t *ctx, dose_signal_t signal)
{
(void) signal;
uint32_t backoff;
backoff = random_uint32_range(0, 2 * ctx->timeout_base);
ztimer_set(ZTIMER_USEC, &ctx->timeout, backoff);
return DOSE_SIGNAL_NONE;
}
static dose_signal_t state_transit_idle(dose_t *ctx, dose_signal_t signal)
{
(void) ctx;
(void) signal;
if (ctx->state == DOSE_STATE_RECV) {
bool dirty = ctx->flags & DOSE_FLAG_RECV_BUF_DIRTY;
bool done = ctx->flags & DOSE_FLAG_END_RECEIVED;
_watchdog_stop();
/* We got here from RECV state. The driver's thread has to look
* if this frame should be processed. By queuing NETDEV_EVENT_ISR,
* the netif thread will call _isr at some time. */
if (crb_end_chunk(&ctx->rb, !dirty && done)) {
netdev_trigger_event_isr(&ctx->netdev);
}
clear_recv_buf(ctx);
}
/* Enable interrupt for start bit sensing */
_enable_sense(ctx);
/* Execute pending send */
if (ctx->flags & DOSE_FLAG_SEND_PENDING) {
return DOSE_SIGNAL_SEND;
}
return DOSE_SIGNAL_NONE;
}
static dose_signal_t state_transit_recv(dose_t *ctx, dose_signal_t signal)
{
dose_signal_t rc = DOSE_SIGNAL_NONE;
if (ctx->state != DOSE_STATE_RECV) {
/* We freshly entered this state. Thus, no start bit sensing is required
* anymore. Disable RX Start IRQs during the transmission. */
_disable_sense(ctx);
_watchdog_start();
crb_start_chunk(&ctx->rb);
}
if (signal == DOSE_SIGNAL_UART) {
/* We received a new octet */
bool esc = ctx->flags & DOSE_FLAG_ESC_RECEIVED;
bool dirty = ctx->flags & DOSE_FLAG_RECV_BUF_DIRTY;
if (!esc && ctx->uart_octet == DOSE_OCTET_ESC) {
SETBIT(ctx->flags, DOSE_FLAG_ESC_RECEIVED);
}
else if (!esc && ctx->uart_octet == DOSE_OCTET_END) {
SETBIT(ctx->flags, DOSE_FLAG_END_RECEIVED);
rc = DOSE_SIGNAL_END;
}
else {
if (esc) {
CLRBIT(ctx->flags, DOSE_FLAG_ESC_RECEIVED);
}
if (!dirty && !crb_add_byte(&ctx->rb, ctx->uart_octet)) {
SETBIT(ctx->flags, DOSE_FLAG_RECV_BUF_DIRTY);
}
}
}
if (rc == DOSE_SIGNAL_NONE && !IS_ACTIVE(MODULE_DOSE_WATCHDOG)) {
/* No signal is returned. We stay in the RECV state. */
ztimer_set(ZTIMER_USEC, &ctx->timeout, ctx->timeout_base);
}
return rc;
}
static dose_signal_t state_transit_send(dose_t *ctx, dose_signal_t signal)
{
(void) signal;
if (ctx->state != DOSE_STATE_SEND) {
/* Disable RX Start IRQs during the transmission. */
_disable_sense(ctx);
}
/* Don't trace any END octets ... the timeout or the END signal
* will bring us back to the BLOCKED state after _send has emitted
* its last octet. */
#ifndef MODULE_PERIPH_UART_COLLISION
ztimer_set(ZTIMER_USEC, &ctx->timeout, ctx->timeout_base);
#endif
return DOSE_SIGNAL_NONE;
}
static void state(dose_t *ctx, dose_signal_t signal)
{
/* Make sure no other thread or ISR interrupts state transitions */
unsigned irq_state = irq_disable();
do {
/* The edges of the finite state machine can be identified by
* the current state and the signal that caused a state transition.
* Since the state only occupies the first 4 bits and the signal the
* last 4 bits of a uint8_t, they can be added together and hence
* be checked together. */
switch (ctx->state + signal) {
case DOSE_STATE_IDLE + DOSE_SIGNAL_SEND:
signal = state_transit_blocked(ctx, signal);
ctx->state = DOSE_STATE_BLOCKED;
break;
case DOSE_STATE_SEND + DOSE_SIGNAL_END:
case DOSE_STATE_SEND + DOSE_SIGNAL_ZTIMER:
case DOSE_STATE_INIT + DOSE_SIGNAL_INIT:
case DOSE_STATE_RECV + DOSE_SIGNAL_END:
case DOSE_STATE_RECV + DOSE_SIGNAL_ZTIMER:
signal = state_transit_idle(ctx, signal);
ctx->state = DOSE_STATE_IDLE;
break;
case DOSE_STATE_IDLE + DOSE_SIGNAL_GPIO:
case DOSE_STATE_IDLE + DOSE_SIGNAL_UART:
case DOSE_STATE_BLOCKED + DOSE_SIGNAL_GPIO:
case DOSE_STATE_BLOCKED + DOSE_SIGNAL_UART:
case DOSE_STATE_RECV + DOSE_SIGNAL_UART:
signal = state_transit_recv(ctx, signal);
ctx->state = DOSE_STATE_RECV;
break;
case DOSE_STATE_BLOCKED + DOSE_SIGNAL_ZTIMER:
case DOSE_STATE_SEND + DOSE_SIGNAL_UART:
signal = state_transit_send(ctx, signal);
ctx->state = DOSE_STATE_SEND;
break;
default:
DEBUG("dose state(): unexpected state transition (STATE=0x%02x SIGNAL=0x%02x)\n", ctx->state, signal);
/* fall-through */
case DOSE_STATE_RECV + DOSE_SIGNAL_SEND:
signal = DOSE_SIGNAL_NONE;
}
} while (signal != DOSE_SIGNAL_NONE);
/* Indicate state change by unlocking state mutex */
mutex_unlock(&ctx->state_mtx);
irq_restore(irq_state);
}
static void _isr_uart(void *arg, uint8_t c)
{
dose_t *dev = arg;
dev->uart_octet = c;
state(dev, DOSE_SIGNAL_UART);
}
static void _isr_gpio(void *arg)
{
dose_t *dev = arg;
state(dev, DOSE_SIGNAL_GPIO);
}
static void _isr_ztimer(void *arg)
{
dose_t *dev = arg;
switch (dev->state) {
#ifndef MODULE_DOSE_WATCHDOG
case DOSE_STATE_RECV:
#endif
case DOSE_STATE_BLOCKED:
case DOSE_STATE_SEND:
state(dev, DOSE_SIGNAL_ZTIMER);
break;
default:
;
}
}
static void clear_recv_buf(dose_t *ctx)
{
unsigned irq_state = irq_disable();
#ifdef MODULE_DOSE_WATCHDOG
ctx->recv_buf_ptr_last = NULL;
#endif
CLRBIT(ctx->flags, DOSE_FLAG_RECV_BUF_DIRTY);
CLRBIT(ctx->flags, DOSE_FLAG_END_RECEIVED);
CLRBIT(ctx->flags, DOSE_FLAG_ESC_RECEIVED);
irq_restore(irq_state);
}
static void _isr(netdev_t *netdev)
{
uint8_t dst[ETHERNET_ADDR_LEN];
dose_t *ctx = container_of(netdev, dose_t, netdev);
size_t len;
/* Check for minimum length of an Ethernet packet */
if (!crb_get_chunk_size(&ctx->rb, &len) ||
len < sizeof(ethernet_hdr_t) + DOSE_FRAME_CRC_LEN) {
DEBUG("dose _isr(): frame too short -> drop\n");
crb_consume_chunk(&ctx->rb, NULL, 0);
return;
}
/* Check the dst mac addr if the iface is not in promiscuous mode */
if (!(ctx->opts & DOSE_OPT_PROMISCUOUS)) {
/* get destination address - length of RX frame has ben checked before */
crb_peek_bytes(&ctx->rb, dst, offsetof(ethernet_hdr_t, dst), sizeof(dst));
/* destination has to be either broadcast or our address */
if ((dst[0] & 0x1) == 0 && memcmp(dst, ctx->mac_addr.uint8, ETHERNET_ADDR_LEN) != 0) {
DEBUG("dose _isr(): dst mac not matching -> drop\n");
crb_consume_chunk(&ctx->rb, NULL, 0);
return;
}
}
/* Check the CRC */
uint16_t crc = 0xffff;
crb_chunk_foreach(&ctx->rb, _crc_cb, &crc);
if (crc != 0x0000) {
DEBUG("dose _isr(): wrong crc 0x%04x -> drop\n", crc);
crb_consume_chunk(&ctx->rb, NULL, 0);
return;
}
/* Finally schedule a _recv method call */
DEBUG("dose _isr(): NETDEV_EVENT_RX_COMPLETE\n");
ctx->netdev.event_callback(&ctx->netdev, NETDEV_EVENT_RX_COMPLETE);
}
static int _recv(netdev_t *dev, void *buf, size_t len, void *info)
{
int res;
dose_t *ctx = container_of(dev, dose_t, netdev);
(void)info;
if (!buf && !len) {
size_t pktlen;
/* Return the amount of received bytes */
if (crb_get_chunk_size(&ctx->rb, &pktlen)) {
return pktlen - DOSE_FRAME_CRC_LEN;
} else {
return 0;
}
}
if (crb_consume_chunk(&ctx->rb, buf, len)) {
res = len;
} else {
res = -1;
}
size_t dummy;
if (crb_get_chunk_size(&ctx->rb, &dummy)) {
DEBUG("dose: %" PRIuSIZE " byte pkt in rx queue\n", dummy);
netdev_trigger_event_isr(&ctx->netdev);
}
return res;
}
static uint8_t wait_for_state(dose_t *ctx, uint8_t state)
{
do {
/* This mutex is unlocked by the state machine
* after every state transition */
mutex_lock(&ctx->state_mtx);
} while (state != DOSE_STATE_ANY && ctx->state != state);
return ctx->state;
}
static int send_octet(dose_t *ctx, uint8_t c)
{
uart_write(ctx->uart, (uint8_t *) &c, sizeof(c));
#ifdef MODULE_PERIPH_UART_COLLISION
return uart_collision_detected(ctx->uart);
#endif
/* Wait for a state transition */
uint8_t new_state = wait_for_state(ctx, DOSE_STATE_ANY);
if (new_state != DOSE_STATE_SEND) {
/* Timeout */
DEBUG("dose send_octet(): timeout\n");
return -2;
}
else if (ctx->uart_octet != c) {
/* Mismatch */
DEBUG("dose send_octet(): mismatch\n");
return -1;
}
return 0;
}
static int send_data_octet(dose_t *ctx, uint8_t c)
{
int rc;
/* Escape special octets */
if (c == DOSE_OCTET_ESC || c == DOSE_OCTET_END) {
rc = send_octet(ctx, DOSE_OCTET_ESC);
if (rc) {
return rc;
}
}
/* Send data octet */
rc = send_octet(ctx, c);
return rc;
}
static inline void _send_start(dose_t *ctx)
{
#ifdef MODULE_PERIPH_UART_TX_ONDEMAND
uart_enable_tx(ctx->uart);
#endif
#ifdef MODULE_PERIPH_UART_COLLISION
uart_collision_detect_enable(ctx->uart);
#else
(void)ctx;
#endif
}
static inline void _send_done(dose_t *ctx, bool collision)
{
#ifdef MODULE_PERIPH_UART_TX_ONDEMAND
uart_disable_tx(ctx->uart);
#endif
#ifdef MODULE_PERIPH_UART_COLLISION
uart_collision_detect_disable(ctx->uart);
if (collision) {
state(ctx, DOSE_SIGNAL_ZTIMER);
}
#else
(void)ctx;
(void)collision;
#endif
}
static int _send(netdev_t *dev, const iolist_t *iolist)
{
dose_t *ctx = container_of(dev, dose_t, netdev);
int8_t retries = 3;
size_t pktlen;
uint16_t crc;
/* discard data when interface is in SLEEP mode */
if (ctx->state == DOSE_STATE_SLEEP) {
return -ENETDOWN;
}
/* sending data wakes the interface from STANDBY */
if (ctx->state == DOSE_STATE_STANDBY) {
_poweron(ctx);
}
send:
crc = 0xffff;
pktlen = 0;
/* Indicate intention to send */
SETBIT(ctx->flags, DOSE_FLAG_SEND_PENDING);
state(ctx, DOSE_SIGNAL_SEND);
/* Wait for transition to SEND state */
wait_for_state(ctx, DOSE_STATE_SEND);
CLRBIT(ctx->flags, DOSE_FLAG_SEND_PENDING);
_send_start(ctx);
/* Send packet buffer */
for (const iolist_t *iol = iolist; iol; iol = iol->iol_next) {
size_t n = iol->iol_len;
pktlen += n;
uint8_t *ptr = iol->iol_base;
crc = crc16_ccitt_false_update(crc, ptr, n);
while (n--) {
/* Send data octet */
if (send_data_octet(ctx, *ptr)) {
goto collision;
}
ptr++;
}
}
/* Send CRC */
network_uint16_t crc_nw = byteorder_htons(crc);
if (send_data_octet(ctx, crc_nw.u8[0])) {
goto collision;
}
if (send_data_octet(ctx, crc_nw.u8[1])) {
goto collision;
}
/* Send END octet */
if (send_octet(ctx, DOSE_OCTET_END)) {
goto collision;
}
_send_done(ctx, false);
/* We probably sent the whole packet?! */
dev->event_callback(dev, NETDEV_EVENT_TX_COMPLETE);
/* Get out of the SEND state */
state(ctx, DOSE_SIGNAL_END);
return pktlen;
collision:
_send_done(ctx, true);
DEBUG("dose _send(): collision!\n");
if (--retries < 0) {
dev->event_callback(dev, NETDEV_EVENT_TX_MEDIUM_BUSY);
return -EBUSY;
}
goto send;
}
static int _get(netdev_t *dev, netopt_t opt, void *value, size_t max_len)
{
dose_t *ctx = container_of(dev, dose_t, netdev);
switch (opt) {
case NETOPT_ADDRESS:
if (max_len < ETHERNET_ADDR_LEN) {
return -EINVAL;
}
memcpy(value, ctx->mac_addr.uint8, ETHERNET_ADDR_LEN);
return ETHERNET_ADDR_LEN;
case NETOPT_PROMISCUOUSMODE:
if (max_len < sizeof(netopt_enable_t)) {
return -EINVAL;
}
if (ctx->opts & DOSE_OPT_PROMISCUOUS) {
*((netopt_enable_t *)value) = NETOPT_ENABLE;
}
else {
*((netopt_enable_t *)value) = NETOPT_DISABLE;
}
return sizeof(netopt_enable_t);
case NETOPT_MAX_PDU_SIZE:
if (CONFIG_DOSE_RX_BUF_LEN < (ETHERNET_FRAME_LEN + DOSE_FRAME_CRC_LEN)) {
if (max_len < sizeof(uint16_t)) {
return -EINVAL;
}
*((uint16_t *)value) = CONFIG_DOSE_RX_BUF_LEN - DOSE_FRAME_CRC_LEN;
return sizeof(uint16_t);
}
/* fall-through */
default:
return netdev_eth_get(dev, opt, value, max_len);
}
return 0;
}
static void _poweron(dose_t *ctx)
{
/* interface is already powered on - do nothing */
if (ctx->state != DOSE_STATE_STANDBY &&
ctx->state != DOSE_STATE_SLEEP) {
return;
}
if (gpio_is_valid(ctx->standby_pin)) {
gpio_clear(ctx->standby_pin);
}
uart_poweron(ctx->uart);
_enable_sense(ctx);
ctx->state = DOSE_STATE_IDLE;
}
static void _poweroff(dose_t *ctx, dose_state_t sleep_state)
{
/* interface is already powered off - do nothing */
if (ctx->state == DOSE_STATE_STANDBY ||
ctx->state == DOSE_STATE_SLEEP) {
return;
}
wait_for_state(ctx, DOSE_STATE_IDLE);
if (gpio_is_valid(ctx->standby_pin)) {
gpio_set(ctx->standby_pin);
}
_disable_sense(ctx);
uart_poweroff(ctx->uart);
ctx->state = sleep_state;
}
static int _set_state(dose_t *ctx, netopt_state_t state)
{
switch (state) {
case NETOPT_STATE_STANDBY:
_poweroff(ctx, DOSE_STATE_STANDBY);
return sizeof(netopt_state_t);
case NETOPT_STATE_SLEEP:
_poweroff(ctx, DOSE_STATE_SLEEP);
return sizeof(netopt_state_t);
case NETOPT_STATE_IDLE:
_poweron(ctx);
return sizeof(netopt_state_t);
default:
break;
}
return -ENOTSUP;
}
static int _set(netdev_t *dev, netopt_t opt, const void *value, size_t len)
{
dose_t *ctx = container_of(dev, dose_t, netdev);
switch (opt) {
case NETOPT_ADDRESS:
if (len < ETHERNET_ADDR_LEN) {
return -EINVAL;
}
memcpy(ctx->mac_addr.uint8, value, ETHERNET_ADDR_LEN);
return ETHERNET_ADDR_LEN;
case NETOPT_PROMISCUOUSMODE:
if (len < sizeof(netopt_enable_t)) {
return -EINVAL;
}
if (((const bool *)value)[0]) {
SETBIT(ctx->opts, DOSE_OPT_PROMISCUOUS);
}
else {
CLRBIT(ctx->opts, DOSE_OPT_PROMISCUOUS);
}
return sizeof(netopt_enable_t);
case NETOPT_STATE:
assert(len <= sizeof(netopt_state_t));
return _set_state(ctx, *((const netopt_state_t *)value));
default:
return netdev_eth_set(dev, opt, value, len);
}
return 0;
}
static int _init(netdev_t *dev)
{
dose_t *ctx = container_of(dev, dose_t, netdev);
unsigned irq_state;
/* Set state machine to defaults */
irq_state = irq_disable();
ctx->opts = 0;
ctx->flags = 0;
ctx->state = DOSE_STATE_INIT;
crb_init(&ctx->rb, ctx->recv_buf, sizeof(ctx->recv_buf));
irq_restore(irq_state);
state(ctx, DOSE_SIGNAL_INIT);
dev->event_callback(dev, NETDEV_EVENT_LINK_UP);
return 0;
}
static const netdev_driver_t netdev_driver_dose = {
.send = _send,
.recv = _recv,
.init = _init,
.isr = _isr,
.get = _get,
.set = _set
};
void dose_setup(dose_t *ctx, const dose_params_t *params, uint8_t index)
{
ctx->netdev.driver = &netdev_driver_dose;
mutex_init(&ctx->state_mtx);
ctx->uart = params->uart;
uart_init(ctx->uart, params->baudrate, _isr_uart, (void *) ctx);
_init_sense(ctx, params);
_init_standby(ctx, params);
netdev_register(&ctx->netdev, NETDEV_DOSE, index);
assert(sizeof(ctx->mac_addr.uint8) == ETHERNET_ADDR_LEN);
netdev_eui48_get(&ctx->netdev, &ctx->mac_addr);
DEBUG("dose dose_setup(): mac addr %02x:%02x:%02x:%02x:%02x:%02x\n",
ctx->mac_addr.uint8[0], ctx->mac_addr.uint8[1], ctx->mac_addr.uint8[2],
ctx->mac_addr.uint8[3], ctx->mac_addr.uint8[4], ctx->mac_addr.uint8[5]
);
/* The timeout base is the minimal timeout base used for this driver.
* To calculate how long it takes to transfer one byte we assume
* 8 data bits + 1 start bit + 1 stop bit per byte.
*/
ctx->timeout_base = CONFIG_DOSE_TIMEOUT_BYTES * 10UL * US_PER_SEC / params->baudrate;
DEBUG("dose timeout set to %" PRIu32 " µs\n", ctx->timeout_base);
ctx->timeout.callback = _isr_ztimer;
ctx->timeout.arg = ctx;
#ifdef MODULE_DOSE_WATCHDOG
if (index >= _dose_numof) {
_dose_numof = index + 1;
}
if (index == 0) {
_dose_base = ctx;
_watchdog_init(ctx->timeout_base * 2);
}
#endif /* MODULE_DOSE_WATCHDOG */
}