1
0
mirror of https://github.com/RIOT-OS/RIOT.git synced 2024-12-29 04:50:03 +01:00
RIOT/sys/xtimer/xtimer.c
Marian Buschsieweke 4f36d21957
sys/xtimer: clean up xtimer_mutex_lock_timeout
Use `mutex_lock_cancelable()` and `mutex_cancel()` to implement
`xtimer_mutex_lock_timeout()`.
2020-12-08 22:03:57 +01:00

283 lines
6.6 KiB
C

/*
* Copyright (C) 2015 Kaspar Schleiser <kaspar@schleiser.de>
* Copyright (C) 2016 Eistec AB
*
* This file is subject to the terms and conditions of the GNU Lesser
* General Public License v2.1. See the file LICENSE in the top level
* directory for more details.
*/
/**
* @ingroup sys_xtimer
*
* @{
* @file
* @brief xtimer convenience functionality
* @author Kaspar Schleiser <kaspar@schleiser.de>
* @author Joakim Nohlgård <joakim.nohlgard@eistec.se>
* @}
*/
#include <assert.h>
#include <stdint.h>
#include <string.h>
#include "xtimer.h"
#include "msg.h"
#include "mutex.h"
#include "rmutex.h"
#include "thread.h"
#include "irq.h"
#include "div.h"
#include "list.h"
#include "timex.h"
#ifdef MODULE_CORE_THREAD_FLAGS
#include "thread_flags.h"
#endif
#define ENABLE_DEBUG 0
#include "debug.h"
static void _callback_unlock_mutex(void* arg)
{
mutex_t *mutex = (mutex_t *) arg;
mutex_unlock(mutex);
}
void _xtimer_tsleep(uint32_t offset, uint32_t long_offset)
{
if (irq_is_in()) {
assert(!long_offset);
_xtimer_spin(offset);
return;
}
xtimer_t timer;
mutex_t mutex = MUTEX_INIT;
timer.callback = _callback_unlock_mutex;
timer.arg = (void*) &mutex;
mutex_lock(&mutex);
_xtimer_set64(&timer, offset, long_offset);
mutex_lock(&mutex);
}
void _xtimer_periodic_wakeup(uint32_t *last_wakeup, uint32_t period) {
xtimer_t timer;
mutex_t mutex = MUTEX_INIT;
timer.callback = _callback_unlock_mutex;
timer.arg = (void*) &mutex;
/* time sensitive until setting offset */
unsigned int state = irq_disable();
uint32_t now = _xtimer_now();
uint32_t elapsed = now - (*last_wakeup);
uint32_t offset = (*last_wakeup) + period - now;
irq_restore(state);
if (elapsed >= period) {
/* timer should be fired right now (some time drift might happen) */
*last_wakeup = now;
return;
}
mutex_lock(&mutex);
_xtimer_set64(&timer, offset, 0);
mutex_lock(&mutex);
*last_wakeup = now + offset;
}
#ifdef MODULE_CORE_MSG
static void _callback_msg(void* arg)
{
msg_t *msg = (msg_t*)arg;
msg_send_int(msg, msg->sender_pid);
}
static inline void _setup_msg(xtimer_t *timer, msg_t *msg, kernel_pid_t target_pid)
{
timer->callback = _callback_msg;
timer->arg = (void*) msg;
/* use sender_pid field to get target_pid into callback function */
msg->sender_pid = target_pid;
}
void _xtimer_set_msg(xtimer_t *timer, uint32_t offset, msg_t *msg, kernel_pid_t target_pid)
{
_setup_msg(timer, msg, target_pid);
_xtimer_set64(timer, offset, 0);
}
void _xtimer_set_msg64(xtimer_t *timer, uint64_t offset, msg_t *msg, kernel_pid_t target_pid)
{
_setup_msg(timer, msg, target_pid);
_xtimer_set64(timer, offset, offset >> 32);
}
/* Prepares the message to trigger the timeout.
* Additionally, the xtimer_t struct gets initialized.
*/
static void _setup_timer_msg(msg_t *m, xtimer_t *t)
{
m->type = MSG_XTIMER;
m->content.ptr = m;
t->offset = t->long_offset = 0;
}
/* Waits for incoming message or timeout. */
static int _msg_wait(msg_t *m, msg_t *tmsg, xtimer_t *t)
{
msg_receive(m);
if (m->type == MSG_XTIMER && m->content.ptr == tmsg) {
/* we hit the timeout */
return -1;
}
else {
xtimer_remove(t);
return 1;
}
}
int _xtimer_msg_receive_timeout64(msg_t *m, uint64_t timeout_ticks) {
msg_t tmsg;
xtimer_t t;
_setup_timer_msg(&tmsg, &t);
_xtimer_set_msg64(&t, timeout_ticks, &tmsg, thread_getpid());
return _msg_wait(m, &tmsg, &t);
}
int _xtimer_msg_receive_timeout(msg_t *msg, uint32_t timeout_ticks)
{
msg_t tmsg;
xtimer_t t;
_setup_timer_msg(&tmsg, &t);
_xtimer_set_msg(&t, timeout_ticks, &tmsg, thread_getpid());
return _msg_wait(msg, &tmsg, &t);
}
#endif /* MODULE_CORE_MSG */
static void _callback_wakeup(void* arg)
{
thread_wakeup((kernel_pid_t)((intptr_t)arg));
}
void _xtimer_set_wakeup(xtimer_t *timer, uint32_t offset, kernel_pid_t pid)
{
timer->callback = _callback_wakeup;
timer->arg = (void*) ((intptr_t)pid);
_xtimer_set64(timer, offset, 0);
}
void _xtimer_set_wakeup64(xtimer_t *timer, uint64_t offset, kernel_pid_t pid)
{
timer->callback = _callback_wakeup;
timer->arg = (void*) ((intptr_t)pid);
_xtimer_set64(timer, offset, offset >> 32);
}
void xtimer_now_timex(timex_t *out)
{
uint64_t now = xtimer_usec_from_ticks64(xtimer_now64());
out->seconds = div_u64_by_1000000(now);
out->microseconds = now - (out->seconds * US_PER_SEC);
}
static void _mutex_timeout(void *arg)
{
mutex_cancel(arg);
}
int xtimer_mutex_lock_timeout(mutex_t *mutex, uint64_t timeout)
{
if (mutex_trylock(mutex)) {
return 0;
}
if (timeout == 0) {
return - 1;
}
mutex_cancel_t mc = mutex_cancel_init(mutex);
xtimer_t t = { .callback = _mutex_timeout, .arg = &mc };
xtimer_set64(&t, timeout);
if (mutex_lock_cancelable(&mc)) {
return -1;
}
xtimer_remove(&t);
return 0;
}
int xtimer_rmutex_lock_timeout(rmutex_t *rmutex, uint64_t timeout)
{
if (rmutex_trylock(rmutex)) {
return 0;
}
if (xtimer_mutex_lock_timeout(&rmutex->mutex, timeout) == 0) {
atomic_store_explicit(&rmutex->owner,
thread_getpid(), memory_order_relaxed);
rmutex->refcount++;
return 0;
}
return -1;
}
#ifdef MODULE_CORE_THREAD_FLAGS
static void _set_timeout_flag_callback(void* arg)
{
thread_flags_set(arg, THREAD_FLAG_TIMEOUT);
}
static void _set_timeout_flag_prepare(xtimer_t *t)
{
t->callback = _set_timeout_flag_callback;
t->arg = thread_get_active();
thread_flags_clear(THREAD_FLAG_TIMEOUT);
}
void xtimer_set_timeout_flag(xtimer_t *t, uint32_t timeout)
{
_set_timeout_flag_prepare(t);
xtimer_set(t, timeout);
}
void xtimer_set_timeout_flag64(xtimer_t *t, uint64_t timeout)
{
_set_timeout_flag_prepare(t);
xtimer_set64(t, timeout);
}
#endif
uint64_t xtimer_left_usec(const xtimer_t *timer)
{
unsigned state = irq_disable();
/* ensure we're working on valid data by making a local copy of timer */
xtimer_t t = *timer;
uint64_t now_us = xtimer_now_usec64();
irq_restore(state);
uint64_t start_us = _xtimer_usec_from_ticks64(
((uint64_t)t.long_start_time << 32) | t.start_time);
uint64_t target_us = start_us + _xtimer_usec_from_ticks64(
((uint64_t)t.long_offset) << 32 | t.offset);
/* Let's assume that 64bit won't overflow anytime soon. There'd be >580
* years when counting nanoseconds. With microseconds, there are 580000
* years of space in 2**64... */
if (now_us > target_us) {
return 0;
}
return target_us - now_us;
}