1
0
mirror of https://github.com/RIOT-OS/RIOT.git synced 2024-12-29 04:50:03 +01:00
RIOT/core/hwtimer.c

224 lines
5.8 KiB
C

/**
* hardware timer abstraction
*
* Copyright (C) 2010 Freie Universität Berlin
*
* This file subject to the terms and conditions of the GNU General Public
* License. See the file LICENSE in the top level directory for more details.
*
* @ingroup kernel
* @{
* @file
* @author Heiko Will <hwill@inf.fu-berlin.de>
* @author Thomas Hillebrandt <hillebra@inf.fu-berlin.de>
* @author Kaspar Schleiser <kaspar.schleiser@fu-berlin.de>
* @}
*/
#include <stdio.h>
#include "hwtimer.h"
#include "hwtimer_cpu.h"
#include "hwtimer_arch.h"
#include <bitarithm.h>
#define USE_NONBLOCKING_WAIT 1
#if USE_NONBLOCKING_WAIT
//#include <stdlib.h>
#include "kernel.h"
#include "mutex.h"
#endif
/*---------------------------------------------------------------------------*/
typedef struct hwtimer_t {
void (*callback)(void*);
void* data;
uint8_t checksum;
} hwtimer_t;
#define HWTIMER_QUEUESIZE ARCH_MAXTIMERS
#define Q_FULL HWTIMER_QUEUESIZE + 1
static hwtimer_t timer[HWTIMER_QUEUESIZE];
static int queue[HWTIMER_QUEUESIZE];
static short queue_head = 0;
static short queue_tail = 0;
static short queue_items = 0;
static uint8_t timer_id = 0;
static volatile long available_timers = 0;
/*---------------------------------------------------------------------------*/
static int enqueue(int item) {
// Test if timer is already cleared:
// (hack to prevent race-condition with proccing timer (ISR) and manual hwtimer_remove)
if (available_timers & (1 << item)) {
return 1;
}
queue[queue_tail] = item;
available_timers |= (1 << item);
queue_tail = (queue_tail + 1) % HWTIMER_QUEUESIZE;
queue_items++;
if (queue_items == HWTIMER_QUEUESIZE) {
lpm_prevent_sleep &= ~LPM_PREVENT_SLEEP_HWTIMER; // Allow power down
}
return 1;
}
static int dequeue(void) {
register int ret;
if (!queue_items)
return Q_FULL;
lpm_prevent_sleep |= LPM_PREVENT_SLEEP_HWTIMER; // No power down while a timer is active
queue_items--;
ret = queue[queue_head];
queue[queue_head] = 0xff; // Mark as empty
available_timers &= ~(1 << ret);
queue_head = (queue_head + 1) % HWTIMER_QUEUESIZE;
return ret;
}
static void multiplexer(int source) {
enqueue(source);
timer[source].callback(timer[source].data);
}
static void hwtimer_releasemutex(void* mutex) {
mutex_unlock((mutex_t*)mutex, true);
}
void hwtimer_spin(unsigned long ticks)
{
unsigned long co = hwtimer_arch_now() + ticks;
while (hwtimer_arch_now() > co);
while (hwtimer_arch_now() < co);
}
/*---------------------------------------------------------------------------*/
void hwtimer_init(void) {
hwtimer_init_comp(F_CPU);
}
/*---------------------------------------------------------------------------*/
void hwtimer_init_comp(uint32_t fcpu) {
int i;
queue_head = 0;
queue_tail = 0;
queue_items = 0;
timer_id = 0;
available_timers = 0;
hwtimer_arch_init(multiplexer, fcpu);
for (i = 0; i < HWTIMER_QUEUESIZE; i++) {
queue[i] = 0xff; // init queue as empty
}
for (i = 0; i < HWTIMER_QUEUESIZE; i++) {
enqueue(i);
}
}
/*---------------------------------------------------------------------------*/
int hwtimer_active(void) {
return queue_items != HWTIMER_QUEUESIZE;
}
/*---------------------------------------------------------------------------*/
unsigned long hwtimer_now(void)
{
return hwtimer_arch_now();
}
/*---------------------------------------------------------------------------*/
void hwtimer_wait(unsigned long ticks)
{
mutex_t mutex;
if (ticks <= 4 || inISR()) {
hwtimer_spin(ticks);
return;
}
mutex_init(&mutex);
mutex_lock(&mutex);
// -2 is to adjust the real value
int res = hwtimer_set(ticks-2, hwtimer_releasemutex, &mutex);
if (res == -1) {
mutex_unlock(&mutex, true);
hwtimer_spin(ticks);
return;
}
mutex_lock(&mutex);
}
/*---------------------------------------------------------------------------*/
static int _hwtimer_set(unsigned long offset, void (*callback)(void*), void *ptr, bool absolute)
{
if (! inISR() ) dINT();
// hwtimer_arch_disable_interrupt();
int x = dequeue();
if (x == Q_FULL) {
printf("[KT] no timers left\n");
// hwtimer_arch_enable_interrupt();
if (! inISR()) eINT();
return -1;
}
timer[x].callback = callback;
timer[x].data = ptr;
timer[x].checksum = ++timer_id;
if (absolute)
hwtimer_arch_set_absolute(offset, x);
else
hwtimer_arch_set(offset, x);
//hwtimer_arch_enable_interrupt();
if (! inISR()) eINT();
return (timer[x].checksum << 8) + x;
}
int hwtimer_set(unsigned long offset, void (*callback)(void*), void *ptr) {
return _hwtimer_set(offset, callback, ptr, false);
}
int hwtimer_set_absolute(unsigned long offset, void (*callback)(void*), void *ptr) {
return _hwtimer_set(offset, callback, ptr, true);
}
/*---------------------------------------------------------------------------*/
int hwtimer_remove(int x)
{
int t = x & 0xff;
uint8_t checksum = (uint8_t) (x >> 8);
if (t < 0 || t >= HWTIMER_QUEUESIZE || timer[t].callback == NULL || timer[t].checksum != checksum) {
return -1;
}
hwtimer_arch_disable_interrupt();
hwtimer_arch_unset(t);
enqueue(t);
timer[t].callback = NULL;
hwtimer_arch_enable_interrupt();
return 1;
}
/*---------------------------------------------------------------------------*/
void hwtimer_debug(int timer)
{
printf("queue size: %i\n", queue_items);
printf("available timers: %lu\n", available_timers);
int t = timer & 0xff;
if (available_timers & (1 << t)) {
printf("timer %i is: not set\n", timer);
} else {
printf("timer %i is: set\n", timer);
}
}