1
0
mirror of https://github.com/RIOT-OS/RIOT.git synced 2025-01-18 12:52:44 +01:00
RIOT/cpu/kinetis/periph/gpio.c
2018-09-26 09:53:30 +02:00

379 lines
8.4 KiB
C

/*
* Copyright (C) 2014 Freie Universität Berlin
* Copyright (C) 2014 PHYTEC Messtechnik GmbH
* Copyright (C) 2014 Eistec AB
*
* This file is subject to the terms and conditions of the GNU Lesser General
* Public License v2.1. See the file LICENSE in the top level directory for more
* details.
*/
/**
* @ingroup cpu_kinetis
* @ingroup drivers_periph_gpio
*
* @{
*
* @file
* @brief Low-level GPIO driver implementation
*
* @author Hauke Petersen <hauke.petersen@fu-berlin.de>
* @author Johann Fischer <j.fischer@phytec.de>
* @author Jonas Remmert <j.remmert@phytec.de>
* @author Joakim Nohlgård <joakim.nohlgard@eistec.se>
*
* @}
*/
#include <stddef.h>
#include <stdint.h>
#include "cpu.h"
#include "bit.h"
#include "periph/gpio.h"
#ifndef PORT_PCR_ODE_MASK
/* For compatibility with Kinetis CPUs without open drain GPIOs (e.g. KW41Z) */
#define PORT_PCR_ODE_MASK 0
#endif
/**
* @brief Get the OCR reg value from the gpio_mode_t value
*/
#define MODE_PCR_MASK (PORT_PCR_ODE_MASK | PORT_PCR_PE_MASK | PORT_PCR_PS_MASK)
/**
* @brief This bit in the mode is set to 1 for output configuration
*/
#define MODE_OUT (0x80)
/**
* @brief Shifting a gpio_t value by this number of bit we can extract the
* port number from the GPIO base address
*/
#define GPIO_SHIFT (6)
/**
* @brief Mask used to extract the PORT base address from the gpio_t value
*/
#define PORT_ADDR_MASK (0x00007000)
/**
* @brief Mask used to extract the GPIO base address from the gpio_t value
*/
#define GPIO_ADDR_MASK (0x000001c0)
/**
* @brief Cleaned up PORT base address
*/
#define PORT_ADDR_BASE (PORTA_BASE & ~(PORT_ADDR_MASK))
/**
* @brief Cleaned up GPIO base address
*/
#define GPIO_ADDR_BASE (GPIOA_BASE & ~(GPIO_ADDR_MASK))
/**
* @brief Kinetis CPUs have 32 pins per port
*/
#define PINS_PER_PORT (32)
#ifdef MODULE_PERIPH_GPIO_IRQ
/**
* @brief Calculate the needed memory (in byte) needed to save 4 bits per MCU
* pin
*/
#define ISR_MAP_SIZE (GPIO_PORTS_NUMOF * PINS_PER_PORT * 4 / 8)
/**
* @brief Define the number of simultaneously configurable interrupt channels
*
* We have configured 4-bits per pin, so we can go up to 16 simultaneous active
* extern interrupt sources.
*/
#define CTX_NUMOF (8U)
/**
* @brief Interrupt context data
*/
typedef struct {
gpio_cb_t cb;
void *arg;
uint32_t state;
} isr_ctx_t;
/**
* @brief Allocation of memory for each independent interrupt slot
*
* We trust the start-up code here to initialize all bytes of this array to
* zero.
*/
static isr_ctx_t isr_ctx[CTX_NUMOF];
/**
* @brief Allocation of 4 bit per pin to map a pin to an interrupt context
*/
static uint32_t isr_map[ISR_MAP_SIZE];
static const uint8_t port_irqs[] = PORT_IRQS;
#endif
static inline PORT_Type *port(gpio_t pin)
{
return (PORT_Type *)(PORT_ADDR_BASE | (pin & PORT_ADDR_MASK));
}
static inline GPIO_Type *gpio(gpio_t pin)
{
return (GPIO_Type *)(GPIO_ADDR_BASE | (pin & GPIO_ADDR_MASK));
}
static inline int port_num(gpio_t pin)
{
return (int)((pin >> GPIO_SHIFT) & 0x7);
}
static inline int pin_num(gpio_t pin)
{
return (int)(pin & 0x3f);
}
#ifdef MODULE_PERIPH_GPIO_IRQ
/**
* @brief Get context for a specific pin
*/
static inline int get_ctx(int port, int pin)
{
return (isr_map[(port * 4) + (pin >> 3)] >> ((pin & 0x7) * 4)) & 0xf;
}
/**
* @brief Find a free spot in the array containing the interrupt contexts
*/
static int get_free_ctx(void)
{
for (unsigned int i = 0; i < CTX_NUMOF; i++) {
if (isr_ctx[i].cb == NULL) {
return i;
}
}
return -1;
}
/**
* @brief Write an entry to the context map array
*/
static void write_map(int port, int pin, int ctx)
{
isr_map[(port * 4) + (pin >> 3)] &= ~(0xf << ((pin & 0x7) * 4));
isr_map[(port * 4) + (pin >> 3)] |= (ctx << ((pin & 0x7) * 4));
}
/**
* @brief Clear the context for the given pin
*/
static void ctx_clear(int port, int pin)
{
int ctx = get_ctx(port, pin);
write_map(port, pin, ctx);
}
#endif
static inline void clk_en(gpio_t pin)
{
bit_set32(&SIM->SCGC5, SIM_SCGC5_PORTA_SHIFT + port_num(pin));
}
int gpio_init(gpio_t pin, gpio_mode_t mode)
{
/* set pin to analog mode while configuring it */
gpio_init_port(pin, GPIO_AF_ANALOG);
/* set pin direction */
if (mode & MODE_OUT) {
gpio(pin)->PDDR |= (1 << pin_num(pin));
}
else {
gpio(pin)->PDDR &= ~(1 << pin_num(pin));
}
/* enable GPIO function */
port(pin)->PCR[pin_num(pin)] = (GPIO_AF_GPIO | (mode & MODE_PCR_MASK));
return 0;
}
void gpio_init_port(gpio_t pin, uint32_t pcr)
{
/* enable PORT clock in case it was not active before */
clk_en(pin);
#ifdef MODULE_PERIPH_GPIO_IRQ
/* if the given interrupt was previously configured as interrupt source, we
* need to free its interrupt context. We to this only after we
* re-configured the pin in case an event is happening just in between... */
uint32_t isr_state = port(pin)->PCR[pin_num(pin)];
#endif
/* set new PCR value */
port(pin)->PCR[pin_num(pin)] = pcr;
#ifdef MODULE_PERIPH_GPIO_IRQ
/* and clear the interrupt context if needed */
if (isr_state & PORT_PCR_IRQC_MASK) {
ctx_clear(port_num(pin), pin_num(pin));
}
#endif
}
int gpio_read(gpio_t pin)
{
if (gpio(pin)->PDDR & (1 << pin_num(pin))) {
return (gpio(pin)->PDOR & (1 << pin_num(pin))) ? 1 : 0;
}
else {
return (gpio(pin)->PDIR & (1 << pin_num(pin))) ? 1 : 0;
}
}
void gpio_set(gpio_t pin)
{
gpio(pin)->PSOR = (1 << pin_num(pin));
}
void gpio_clear(gpio_t pin)
{
gpio(pin)->PCOR = (1 << pin_num(pin));
}
void gpio_toggle(gpio_t pin)
{
gpio(pin)->PTOR = (1 << pin_num(pin));
}
void gpio_write(gpio_t pin, int value)
{
if (value) {
gpio(pin)->PSOR = (1 << pin_num(pin));
}
else {
gpio(pin)->PCOR = (1 << pin_num(pin));
}
}
#ifdef MODULE_PERIPH_GPIO_IRQ
int gpio_init_int(gpio_t pin, gpio_mode_t mode, gpio_flank_t flank,
gpio_cb_t cb, void *arg)
{
if (gpio_init(pin, mode) < 0) {
return -1;
}
/* try go grab a free spot in the context array */
int ctx_num = get_free_ctx();
if (ctx_num < 0) {
return -1;
}
/* save interrupt context */
isr_ctx[ctx_num].cb = cb;
isr_ctx[ctx_num].arg = arg;
isr_ctx[ctx_num].state = flank;
write_map(port_num(pin), pin_num(pin), ctx_num);
/* clear interrupt flags */
port(pin)->ISFR &= ~(1 << pin_num(pin));
/* enable global port interrupts in the NVIC */
NVIC_EnableIRQ(port_irqs[port_num(pin)]);
/* finally, enable the interrupt for the selected pin */
port(pin)->PCR[pin_num(pin)] |= flank;
return 0;
}
void gpio_irq_enable(gpio_t pin)
{
int ctx = get_ctx(port_num(pin), pin_num(pin));
port(pin)->PCR[pin_num(pin)] |= isr_ctx[ctx].state;
}
void gpio_irq_disable(gpio_t pin)
{
int ctx = get_ctx(port_num(pin), pin_num(pin));
isr_ctx[ctx].state = port(pin)->PCR[pin_num(pin)] & PORT_PCR_IRQC_MASK;
port(pin)->PCR[pin_num(pin)] &= ~(PORT_PCR_IRQC_MASK);
}
static inline void irq_handler(PORT_Type *port, int port_num)
{
/* take interrupt flags only from pins which interrupt is enabled */
uint32_t status = port->ISFR;
for (int i = 0; i < 32; i++) {
if ((status & (1u << i)) && (port->PCR[i] & PORT_PCR_IRQC_MASK)) {
port->ISFR = (1u << i);
int ctx = get_ctx(port_num, i);
isr_ctx[ctx].cb(isr_ctx[ctx].arg);
}
}
cortexm_isr_end();
}
#ifdef PORTA_BASE
void isr_porta(void)
{
irq_handler(PORTA, 0);
}
#endif /* PORTA_BASE */
#ifdef PORTB_BASE
void isr_portb(void)
{
irq_handler(PORTB, 1);
}
#endif /* ISR_PORT_B */
#ifdef PORTC_BASE
void isr_portc(void)
{
irq_handler(PORTC, 2);
}
#endif /* ISR_PORT_C */
#ifdef PORTD_BASE
void isr_portd(void)
{
irq_handler(PORTD, 3);
}
#endif /* ISR_PORT_D */
#ifdef PORTE_BASE
void isr_porte(void)
{
irq_handler(PORTE, 4);
}
#endif /* ISR_PORT_E */
#ifdef PORTF_BASE
void isr_portf(void)
{
irq_handler(PORTF, 5);
}
#endif /* ISR_PORT_F */
#ifdef PORTG_BASE
void isr_portg(void)
{
irq_handler(PORTG, 6);
}
#endif /* ISR_PORT_G */
#if defined(PORTB_BASE) && defined(PORTC_BASE)
/* Combined ISR used in certain KL devices */
void isr_portb_portc(void)
{
irq_handler(PORTB, 1);
irq_handler(PORTC, 2);
}
#endif
#endif /* MODULE_PERIPH_GPIO_IRQ */