1
0
mirror of https://github.com/RIOT-OS/RIOT.git synced 2025-01-18 12:52:44 +01:00
RIOT/sys/net/gnrc/link_layer/lwmac/lwmac.c
2021-07-09 11:35:18 +02:00

988 lines
35 KiB
C

/*
* Copyright (C) 2015 Daniel Krebs
* 2016 INRIA
*
* This file is subject to the terms and conditions of the GNU Lesser
* General Public License v2.1. See the file LICENSE in the top level
* directory for more details.
*/
/**
* @ingroup net_gnrc_lwmac
* @{
*
* @file
* @brief Implementation of the LWMAC protocol
*
* @author Daniel Krebs <github@daniel-krebs.net>
* @author Shuguo Zhuo <shuguo.zhuo@inria.fr>
* @}
*/
#include <errno.h>
#include <stdlib.h>
#include <string.h>
#include <stdint.h>
#include <stdbool.h>
#include "od.h"
#include "timex.h"
#include "random.h"
#include "periph/rtt.h"
#include "net/gnrc/netif.h"
#include "net/gnrc/netif/hdr.h"
#include "net/gnrc/netif/internal.h"
#include "net/gnrc/netif/ieee802154.h"
#include "net/netdev/ieee802154.h"
#include "net/gnrc/lwmac/types.h"
#include "net/gnrc/lwmac/lwmac.h"
#include "net/gnrc/mac/internal.h"
#include "net/gnrc/lwmac/timeout.h"
#include "include/tx_state_machine.h"
#include "include/rx_state_machine.h"
#include "include/lwmac_internal.h"
#ifndef LOG_LEVEL
/**
* @brief Default log level define
*/
#define LOG_LEVEL LOG_WARNING
#endif
#include "log.h"
#define ENABLE_DEBUG 0
#include "debug.h"
/**
* @brief LWMAC thread's PID
*/
kernel_pid_t lwmac_pid;
static void rtt_cb(void *arg);
static void lwmac_set_state(gnrc_netif_t *netif, gnrc_lwmac_state_t newstate);
static void lwmac_schedule_update(gnrc_netif_t *netif);
static void rtt_handler(uint32_t event, gnrc_netif_t *netif);
static void _lwmac_init(gnrc_netif_t *netif);
static int _send(gnrc_netif_t *netif, gnrc_pktsnip_t *pkt);
static gnrc_pktsnip_t *_recv(gnrc_netif_t *netif);
static void _lwmac_msg_handler(gnrc_netif_t *netif, msg_t *msg);
static const gnrc_netif_ops_t lwmac_ops = {
.init = _lwmac_init,
.send = _send,
.recv = _recv,
.get = gnrc_netif_get_from_netdev,
.set = gnrc_netif_set_from_netdev,
.msg_handler = _lwmac_msg_handler,
};
int gnrc_netif_lwmac_create(gnrc_netif_t *netif, char *stack, int stacksize,
char priority, const char *name, netdev_t *dev)
{
return gnrc_netif_create(netif, stack, stacksize, priority, name, dev,
&lwmac_ops);
}
static void lwmac_reinit_radio(gnrc_netif_t *netif)
{
/* Initialize low-level driver. */
netif->dev->driver->init(netif->dev);
/* Set MAC address length. */
uint16_t src_len = netif->l2addr_len;
netif->dev->driver->set(netif->dev, NETOPT_SRC_LEN, &src_len, sizeof(src_len));
/* Set the MAC address of the device. */
if (netif->l2addr_len == IEEE802154_LONG_ADDRESS_LEN) {
netif->dev->driver->set(netif->dev,
NETOPT_ADDRESS_LONG,
netif->l2addr,
sizeof(netif->l2addr));
}
else {
netif->dev->driver->set(netif->dev,
NETOPT_ADDR_LEN,
netif->l2addr,
sizeof(netif->l2addr));
}
/* Check if RX-start and TX-started and TX-END interrupts are supported */
if (IS_ACTIVE(DEVELHELP)) {
netopt_enable_t enable;
netif->dev->driver->get(netif->dev, NETOPT_RX_START_IRQ, &enable, sizeof(enable));
assert(enable == NETOPT_ENABLE);
netif->dev->driver->get(netif->dev, NETOPT_RX_END_IRQ, &enable, sizeof(enable));
assert(enable == NETOPT_ENABLE);
netif->dev->driver->get(netif->dev, NETOPT_TX_END_IRQ, &enable, sizeof(enable));
assert(enable == NETOPT_ENABLE);
}
}
static gnrc_pktsnip_t *_make_netif_hdr(uint8_t *mhr)
{
gnrc_pktsnip_t *snip;
uint8_t src[IEEE802154_LONG_ADDRESS_LEN], dst[IEEE802154_LONG_ADDRESS_LEN];
int src_len, dst_len;
le_uint16_t _pan_tmp; /* TODO: hand-up PAN IDs to GNRC? */
dst_len = ieee802154_get_dst(mhr, dst, &_pan_tmp);
src_len = ieee802154_get_src(mhr, src, &_pan_tmp);
if ((dst_len < 0) || (src_len < 0)) {
DEBUG("_make_netif_hdr: unable to get addresses\n");
return NULL;
}
/* allocate space for header */
snip = gnrc_netif_hdr_build(src, (size_t)src_len, dst, (size_t)dst_len);
if (snip == NULL) {
DEBUG("_make_netif_hdr: no space left in packet buffer\n");
return NULL;
}
/* set broadcast flag for broadcast destination */
if ((dst_len == 2) && (dst[0] == 0xff) && (dst[1] == 0xff)) {
gnrc_netif_hdr_t *hdr = snip->data;
hdr->flags |= GNRC_NETIF_HDR_FLAGS_BROADCAST;
}
return snip;
}
static gnrc_pktsnip_t *_recv(gnrc_netif_t *netif)
{
netdev_t *dev = netif->dev;
netdev_ieee802154_rx_info_t rx_info;
netdev_ieee802154_t *state = container_of(dev, netdev_ieee802154_t, netdev);
gnrc_pktsnip_t *pkt = NULL;
int bytes_expected = dev->driver->recv(dev, NULL, 0, NULL);
if (bytes_expected > 0) {
int nread;
pkt = gnrc_pktbuf_add(NULL, NULL, bytes_expected, GNRC_NETTYPE_UNDEF);
if (pkt == NULL) {
DEBUG("_recv_ieee802154: cannot allocate pktsnip.\n");
return NULL;
}
nread = dev->driver->recv(dev, pkt->data, bytes_expected, &rx_info);
if (nread <= 0) {
gnrc_pktbuf_release(pkt);
return NULL;
}
if (!(state->flags & NETDEV_IEEE802154_RAW)) {
gnrc_pktsnip_t *ieee802154_hdr, *netif_hdr;
gnrc_netif_hdr_t *hdr;
size_t mhr_len = ieee802154_get_frame_hdr_len(pkt->data);
if (mhr_len == 0) {
DEBUG("_recv_ieee802154: illegally formatted frame received\n");
gnrc_pktbuf_release(pkt);
return NULL;
}
nread -= mhr_len;
/* mark IEEE 802.15.4 header */
ieee802154_hdr = gnrc_pktbuf_mark(pkt, mhr_len, GNRC_NETTYPE_UNDEF);
if (ieee802154_hdr == NULL) {
DEBUG("_recv_ieee802154: no space left in packet buffer\n");
gnrc_pktbuf_release(pkt);
return NULL;
}
netif_hdr = _make_netif_hdr(ieee802154_hdr->data);
if (netif_hdr == NULL) {
DEBUG("_recv_ieee802154: no space left in packet buffer\n");
gnrc_pktbuf_release(pkt);
return NULL;
}
hdr = netif_hdr->data;
#ifdef MODULE_L2FILTER
if (!l2filter_pass(dev->filter, gnrc_netif_hdr_get_src_addr(hdr),
hdr->src_l2addr_len)) {
gnrc_pktbuf_release(pkt);
gnrc_pktbuf_release(netif_hdr);
DEBUG("_recv_ieee802154: packet dropped by l2filter\n");
return NULL;
}
#endif
hdr->lqi = rx_info.lqi;
hdr->rssi = rx_info.rssi;
gnrc_netif_hdr_set_netif(hdr, netif);
pkt->type = state->proto;
if (IS_ACTIVE(ENABLE_DEBUG)) {
char src_str[GNRC_NETIF_HDR_L2ADDR_PRINT_LEN];
DEBUG("_recv_ieee802154: received packet from %s of length %u\n",
gnrc_netif_addr_to_str(gnrc_netif_hdr_get_src_addr(hdr),
hdr->src_l2addr_len,
src_str),
nread);
if (IS_USED(MODULE_OD)) {
od_hex_dump(pkt->data, nread, OD_WIDTH_DEFAULT);
}
}
gnrc_pktbuf_remove_snip(pkt, ieee802154_hdr);
pkt = gnrc_pkt_append(pkt, netif_hdr);
}
DEBUG("_recv_ieee802154: reallocating.\n");
gnrc_pktbuf_realloc_data(pkt, nread);
}
return pkt;
}
static gnrc_mac_tx_neighbor_t *_next_tx_neighbor(gnrc_netif_t *netif)
{
gnrc_mac_tx_neighbor_t *next = NULL;
uint32_t phase_nearest = GNRC_LWMAC_PHASE_MAX;
for (unsigned i = 0; i < CONFIG_GNRC_MAC_NEIGHBOR_COUNT; i++) {
if (gnrc_priority_pktqueue_length(&netif->mac.tx.neighbors[i].queue) > 0) {
/* Unknown destinations are initialized with their phase at the end
* of the local interval, so known destinations that still wakeup
* in this interval will be preferred. */
uint32_t phase_check = _gnrc_lwmac_ticks_until_phase(netif->mac.tx.neighbors[i].phase);
if (phase_check <= phase_nearest) {
next = &(netif->mac.tx.neighbors[i]);
phase_nearest = phase_check;
DEBUG("[LWMAC-int] Advancing queue #%u\n", i);
}
}
}
return next;
}
static uint32_t _next_inphase_event(uint32_t last, uint32_t interval)
{
/* Counter did overflow since last wakeup */
if (rtt_get_counter() < last) {
/* TODO: Not sure if this was tested :) */
uint32_t tmp = -last;
tmp /= interval;
tmp++;
last += tmp * interval;
}
/* Add margin to next wakeup so that it will be at least 2ms in the future */
while (last < (rtt_get_counter() + GNRC_LWMAC_RTT_EVENT_MARGIN_TICKS)) {
last += interval;
}
return last;
}
inline void lwmac_schedule_update(gnrc_netif_t *netif)
{
gnrc_lwmac_set_reschedule(netif, true);
}
void lwmac_set_state(gnrc_netif_t *netif, gnrc_lwmac_state_t newstate)
{
gnrc_lwmac_state_t oldstate = netif->mac.prot.lwmac.state;
if (newstate == oldstate) {
return;
}
if (newstate >= GNRC_LWMAC_STATE_COUNT) {
LOG_ERROR("ERROR: [LWMAC] Trying to set invalid state %u\n", newstate);
return;
}
/* Already change state, but might be reverted to oldstate when needed */
netif->mac.prot.lwmac.state = newstate;
/* Actions when leaving old state */
switch (oldstate) {
case GNRC_LWMAC_RECEIVING:
case GNRC_LWMAC_TRANSMITTING: {
/* Enable duty cycling again */
rtt_handler(GNRC_LWMAC_EVENT_RTT_RESUME, netif);
break;
}
case GNRC_LWMAC_SLEEPING: {
gnrc_lwmac_clear_timeout(netif, GNRC_LWMAC_TIMEOUT_WAKEUP_PERIOD);
break;
}
default:
break;
}
/* Actions when entering new state */
switch (newstate) {
/*********************** Operation states *********************************/
case GNRC_LWMAC_LISTENING: {
_gnrc_lwmac_set_netdev_state(netif, NETOPT_STATE_IDLE);
break;
}
case GNRC_LWMAC_SLEEPING: {
/* Put transceiver to sleep */
_gnrc_lwmac_set_netdev_state(netif, NETOPT_STATE_SLEEP);
/* We may have come here through RTT handler, so timeout may still be active */
gnrc_lwmac_clear_timeout(netif, GNRC_LWMAC_TIMEOUT_WAKEUP_PERIOD);
if (gnrc_lwmac_get_phase_backoff(netif)) {
gnrc_lwmac_set_phase_backoff(netif, false);
uint32_t alarm;
rtt_clear_alarm();
alarm = random_uint32_range(
RTT_US_TO_TICKS((3 * GNRC_LWMAC_WAKEUP_DURATION_US / 2)),
RTT_US_TO_TICKS(CONFIG_GNRC_LWMAC_WAKEUP_INTERVAL_US -
(3 * GNRC_LWMAC_WAKEUP_DURATION_US / 2)));
LOG_WARNING("WARNING: [LWMAC] phase backoffed: %lu us\n",
(unsigned long)RTT_TICKS_TO_US(alarm));
netif->mac.prot.lwmac.last_wakeup = netif->mac.prot.lwmac.last_wakeup + alarm;
alarm = _next_inphase_event(netif->mac.prot.lwmac.last_wakeup,
RTT_US_TO_TICKS(CONFIG_GNRC_LWMAC_WAKEUP_INTERVAL_US));
rtt_set_alarm(alarm, rtt_cb, (void *) GNRC_LWMAC_EVENT_RTT_WAKEUP_PENDING);
}
/* Return immediately, so no rescheduling */
return;
}
/* Trying to send data */
case GNRC_LWMAC_TRANSMITTING: {
rtt_handler(GNRC_LWMAC_EVENT_RTT_PAUSE, netif); /**< No duty cycling while RXing */
_gnrc_lwmac_set_netdev_state(netif, NETOPT_STATE_IDLE); /**< Power up netdev */
break;
}
/* Receiving incoming data */
case GNRC_LWMAC_RECEIVING: {
rtt_handler(GNRC_LWMAC_EVENT_RTT_PAUSE, netif); /**< No duty cycling while TXing */
_gnrc_lwmac_set_netdev_state(netif, NETOPT_STATE_IDLE); /**< Power up netdev */
break;
}
case GNRC_LWMAC_STOPPED: {
_gnrc_lwmac_set_netdev_state(netif, NETOPT_STATE_OFF);
break;
}
/*********************** Control states ***********************************/
case GNRC_LWMAC_START: {
rtt_handler(GNRC_LWMAC_EVENT_RTT_START, netif);
lwmac_set_state(netif, GNRC_LWMAC_LISTENING);
netif->mac.tx.preamble_fail_counts = 0;
break;
}
case GNRC_LWMAC_STOP: {
rtt_handler(GNRC_LWMAC_EVENT_RTT_STOP, netif);
lwmac_set_state(netif, GNRC_LWMAC_STOPPED);
break;
}
case GNRC_LWMAC_RESET: {
LOG_WARNING("WARNING: [LWMAC] Reset not yet implemented\n");
lwmac_set_state(netif, GNRC_LWMAC_STOP);
lwmac_set_state(netif, GNRC_LWMAC_START);
break;
}
/**************************************************************************/
default: {
LOG_DEBUG("[LWMAC] No actions for entering state %u\n", newstate);
return;
}
}
lwmac_schedule_update(netif);
}
static void _sleep_management(gnrc_netif_t *netif)
{
/* If a packet is scheduled, no other (possible earlier) packet can be
* sent before the first one is handled, even no broadcast
*/
if (!gnrc_lwmac_timeout_is_running(netif, GNRC_LWMAC_TIMEOUT_WAIT_DEST_WAKEUP)) {
gnrc_mac_tx_neighbor_t *neighbour;
/* Check if there is packet remaining for retransmission */
if (netif->mac.tx.current_neighbor != NULL) {
neighbour = netif->mac.tx.current_neighbor;
}
else {
/* Check if there are broadcasts to send and transmit immediately */
if (gnrc_priority_pktqueue_length(&(netif->mac.tx.neighbors[0].queue)) > 0) {
netif->mac.tx.current_neighbor = &(netif->mac.tx.neighbors[0]);
lwmac_set_state(netif, GNRC_LWMAC_TRANSMITTING);
return;
}
neighbour = _next_tx_neighbor(netif);
}
if (neighbour != NULL) {
/* if phase is unknown, send immediately. */
if (neighbour->phase > RTT_TICKS_TO_US(CONFIG_GNRC_LWMAC_WAKEUP_INTERVAL_US)) {
netif->mac.tx.current_neighbor = neighbour;
gnrc_lwmac_set_tx_continue(netif, false);
netif->mac.tx.tx_burst_count = 0;
lwmac_set_state(netif, GNRC_LWMAC_TRANSMITTING);
return;
}
/* Offset in microseconds when the earliest (phase) destination
* node wakes up that we have packets for. */
uint32_t time_until_tx = RTT_TICKS_TO_US(_gnrc_lwmac_ticks_until_phase(neighbour->phase));
/* If there's not enough time to prepare a WR to catch the phase
* postpone to next interval */
if (time_until_tx < CONFIG_GNRC_LWMAC_WR_PREPARATION_US) {
time_until_tx += CONFIG_GNRC_LWMAC_WAKEUP_INTERVAL_US;
}
time_until_tx -= CONFIG_GNRC_LWMAC_WR_PREPARATION_US;
/* add a random time before goto TX, for avoiding one node for
* always holding the medium (if the receiver's phase is recorded earlier in this
* particular node) */
uint32_t random_backoff;
random_backoff = random_uint32_range(0, CONFIG_GNRC_LWMAC_TIME_BETWEEN_WR_US);
time_until_tx = time_until_tx + random_backoff;
gnrc_lwmac_set_timeout(netif, GNRC_LWMAC_TIMEOUT_WAIT_DEST_WAKEUP, time_until_tx);
/* Register neighbour to be the next */
netif->mac.tx.current_neighbor = neighbour;
/* Stop dutycycling, we're preparing to send. This prevents the
* timeout arriving late, so that the destination phase would
* be missed. */
/* TODO: bad for power savings */
rtt_handler(GNRC_LWMAC_EVENT_RTT_PAUSE, netif);
}
}
else if (gnrc_lwmac_timeout_is_expired(netif, GNRC_LWMAC_TIMEOUT_WAIT_DEST_WAKEUP)) {
LOG_DEBUG("[LWMAC] Got timeout for dest wakeup, ticks: %" PRIu32 "\n", rtt_get_counter());
gnrc_lwmac_set_tx_continue(netif, false);
netif->mac.tx.tx_burst_count = 0;
lwmac_set_state(netif, GNRC_LWMAC_TRANSMITTING);
}
}
static void _rx_management_failed(gnrc_netif_t *netif)
{
/* This may happen frequently because we'll receive WA from
* every node in range. */
LOG_DEBUG("[LWMAC] Reception was NOT successful\n");
gnrc_lwmac_rx_stop(netif);
if (netif->mac.rx.rx_bad_exten_count >= CONFIG_GNRC_LWMAC_MAX_RX_EXTENSION_NUM) {
gnrc_lwmac_set_quit_rx(netif, true);
}
/* Here we check if we are close to the end of the cycle. If yes,
* go to sleep. Firstly, get the relative phase. */
uint32_t phase = rtt_get_counter();
if (phase < netif->mac.prot.lwmac.last_wakeup) {
phase = (RTT_US_TO_TICKS(GNRC_LWMAC_PHASE_MAX) - netif->mac.prot.lwmac.last_wakeup) +
phase;
}
else {
phase = phase - netif->mac.prot.lwmac.last_wakeup;
}
/* If the relative phase is beyond 4/5 cycle time, go to sleep. */
if (phase > (4 * RTT_US_TO_TICKS(CONFIG_GNRC_LWMAC_WAKEUP_INTERVAL_US) / 5)) {
gnrc_lwmac_set_quit_rx(netif, true);
}
if (gnrc_lwmac_get_quit_rx(netif)) {
lwmac_set_state(netif, GNRC_LWMAC_SLEEPING);
}
else {
/* Go back to LISTENING for keep hearing on the channel */
lwmac_set_state(netif, GNRC_LWMAC_LISTENING);
}
}
static void _rx_management_success(gnrc_netif_t *netif)
{
LOG_DEBUG("[LWMAC] Reception was successful\n");
gnrc_lwmac_rx_stop(netif);
/* Dispatch received packets, timing is not critical anymore */
gnrc_mac_dispatch(&netif->mac.rx);
/* Here we check if we are close to the end of the cycle. If yes,
* go to sleep. Firstly, get the relative phase. */
uint32_t phase = rtt_get_counter();
if (phase < netif->mac.prot.lwmac.last_wakeup) {
phase = (RTT_US_TO_TICKS(GNRC_LWMAC_PHASE_MAX) - netif->mac.prot.lwmac.last_wakeup) +
phase;
}
else {
phase = phase - netif->mac.prot.lwmac.last_wakeup;
}
/* If the relative phase is beyond 4/5 cycle time, go to sleep. */
if (phase > (4 * RTT_US_TO_TICKS(CONFIG_GNRC_LWMAC_WAKEUP_INTERVAL_US) / 5)) {
gnrc_lwmac_set_quit_rx(netif, true);
}
if (gnrc_lwmac_get_quit_rx(netif)) {
lwmac_set_state(netif, GNRC_LWMAC_SLEEPING);
}
else {
/* Go back to LISTENING after successful reception */
lwmac_set_state(netif, GNRC_LWMAC_LISTENING);
}
}
static void _rx_management(gnrc_netif_t *netif)
{
gnrc_lwmac_rx_state_t state_rx = netif->mac.rx.state;
switch (state_rx) {
case GNRC_LWMAC_RX_STATE_STOPPED: {
gnrc_lwmac_rx_start(netif);
gnrc_lwmac_rx_update(netif);
break;
}
case GNRC_LWMAC_RX_STATE_FAILED: {
_rx_management_failed(netif);
break;
}
case GNRC_LWMAC_RX_STATE_SUCCESSFUL: {
_rx_management_success(netif);
break;
}
default:
gnrc_lwmac_rx_update(netif);
}
/* If state has changed, reschedule main state machine */
if (state_rx != netif->mac.rx.state) {
lwmac_schedule_update(netif);
}
}
static void _tx_management_stopped(gnrc_netif_t *netif)
{
/* If there is packet remaining for retransmission,
* retransmit it (i.e., the retransmission scheme of LWMAC). */
if (netif->mac.tx.packet != NULL) {
LOG_WARNING("WARNING: [LWMAC] TX %d times retry\n",
netif->mac.tx.tx_retry_count);
netif->mac.tx.state = GNRC_LWMAC_TX_STATE_INIT;
netif->mac.tx.wr_sent = 0;
gnrc_lwmac_tx_update(netif);
}
else {
gnrc_pktsnip_t *pkt;
if ((pkt = gnrc_priority_pktqueue_pop(
&netif->mac.tx.current_neighbor->queue))) {
netif->mac.tx.tx_retry_count = 0;
gnrc_lwmac_tx_start(netif, pkt, netif->mac.tx.current_neighbor);
gnrc_lwmac_tx_update(netif);
}
else {
/* Shouldn't happen, but never observed this case */
lwmac_set_state(netif, GNRC_LWMAC_SLEEPING);
}
}
}
static void _tx_management_success(gnrc_netif_t *netif)
{
if (netif->mac.tx.current_neighbor == &(netif->mac.tx.neighbors[0])) {
LOG_INFO("[LWMAC] Broadcast transmission done\n");
}
gnrc_lwmac_tx_stop(netif);
/* In case have pending packets for the same receiver, continue to
* send immediately, before the maximum transmit-limit */
if ((gnrc_lwmac_get_tx_continue(netif)) &&
(netif->mac.tx.tx_burst_count < GNRC_LWMAC_MAX_TX_BURST_PKT_NUM)) {
lwmac_schedule_update(netif);
}
else {
lwmac_set_state(netif, GNRC_LWMAC_SLEEPING);
}
}
static void _tx_management(gnrc_netif_t *netif)
{
gnrc_lwmac_tx_state_t state_tx = netif->mac.tx.state;
switch (state_tx) {
case GNRC_LWMAC_TX_STATE_STOPPED:
_tx_management_stopped(netif);
break;
case GNRC_LWMAC_TX_STATE_FAILED:
/* If transmission failure, do not try burst transmissions and quit other
* transmission attempts in this cycle for collision avoidance */
gnrc_lwmac_set_tx_continue(netif, false);
gnrc_lwmac_set_quit_tx(netif, true);
/* TX packet will be dropped, no automatic resending here. */
/* Re-initialize the radio when needed. */
if (netif->mac.tx.preamble_fail_counts >= CONFIG_GNRC_LWMAC_RADIO_REINIT_THRESHOLD) {
netif->mac.tx.preamble_fail_counts = 0;
LOG_INFO("[LWMAC] Re-initialize radio.");
lwmac_reinit_radio(netif);
}
/* Intentionally falls through */
case GNRC_LWMAC_TX_STATE_SUCCESSFUL:
_tx_management_success(netif);
break;
default:
gnrc_lwmac_tx_update(netif);
break;
}
/* If state has changed, reschedule main state machine */
if (state_tx != netif->mac.tx.state) {
lwmac_schedule_update(netif);
}
}
static void _lwmac_update_listening(gnrc_netif_t *netif)
{
/* In case has pending packet to send, clear rtt alarm thus to goto
* transmission initialization (in SLEEPING management) right after the
* listening period */
if ((_next_tx_neighbor(netif) != NULL) ||
(netif->mac.tx.current_neighbor != NULL)) {
rtt_handler(GNRC_LWMAC_EVENT_RTT_PAUSE, netif);
}
/* Set timeout for if there's no successful rx transaction that will
* change state to SLEEPING. */
if (!gnrc_lwmac_timeout_is_running(netif, GNRC_LWMAC_TIMEOUT_WAKEUP_PERIOD)) {
gnrc_lwmac_set_timeout(netif, GNRC_LWMAC_TIMEOUT_WAKEUP_PERIOD, GNRC_LWMAC_WAKEUP_DURATION_US);
}
else if (gnrc_lwmac_timeout_is_expired(netif, GNRC_LWMAC_TIMEOUT_WAKEUP_PERIOD)) {
/* Dispatch first as there still may be broadcast packets. */
gnrc_mac_dispatch(&netif->mac.rx);
netif->mac.prot.lwmac.state = GNRC_LWMAC_SLEEPING;
/* Enable duty cycling again */
rtt_handler(GNRC_LWMAC_EVENT_RTT_RESUME, netif);
_gnrc_lwmac_set_netdev_state(netif, NETOPT_STATE_SLEEP);
gnrc_lwmac_clear_timeout(netif, GNRC_LWMAC_TIMEOUT_WAKEUP_PERIOD);
/* if there is a packet for transmission, schedule update to start
* transmission initialization immediately. */
gnrc_mac_tx_neighbor_t *neighbour = _next_tx_neighbor(netif);
if ((neighbour != NULL) || (netif->mac.tx.current_neighbor != NULL)) {
/* This triggers packet sending procedure in sleeping immediately. */
lwmac_schedule_update(netif);
return;
}
}
if (gnrc_priority_pktqueue_length(&netif->mac.rx.queue) > 0) {
/* Do wake-up extension in each packet reception. */
gnrc_lwmac_clear_timeout(netif, GNRC_LWMAC_TIMEOUT_WAKEUP_PERIOD);
lwmac_set_state(netif, GNRC_LWMAC_RECEIVING);
}
}
/* Main state machine. Call whenever something happens */
static bool lwmac_update(gnrc_netif_t *netif)
{
gnrc_lwmac_set_reschedule(netif, false);
switch (netif->mac.prot.lwmac.state) {
case GNRC_LWMAC_SLEEPING: {
/* Quit scheduling transmission if 'quit-tx' flag is found set, thus
* to avoid potential collisions with ongoing transmissions of other
* neighbor nodes */
if (gnrc_lwmac_get_quit_tx(netif)) {
return false;
}
_sleep_management(netif);
break;
}
case GNRC_LWMAC_LISTENING: {
_lwmac_update_listening(netif);
break;
}
case GNRC_LWMAC_RECEIVING: {
_rx_management(netif);
break;
}
case GNRC_LWMAC_TRANSMITTING: {
_tx_management(netif);
break;
}
default:
LOG_DEBUG("[LWMAC] No actions in state %u\n", netif->mac.prot.lwmac.state);
}
return gnrc_lwmac_get_reschedule(netif);
}
static void rtt_cb(void *arg)
{
msg_t msg;
msg.content.value = (uint16_t)((uintptr_t) arg);
msg.type = GNRC_LWMAC_EVENT_RTT_TYPE;
msg_send(&msg, lwmac_pid);
if (sched_context_switch_request) {
thread_yield();
}
}
void rtt_handler(uint32_t event, gnrc_netif_t *netif)
{
uint32_t alarm;
switch (event & 0xffff) {
case GNRC_LWMAC_EVENT_RTT_WAKEUP_PENDING: {
/* A new cycle starts, set sleep timing and initialize related MAC-info flags. */
netif->mac.prot.lwmac.last_wakeup = rtt_get_alarm();
alarm = _next_inphase_event(netif->mac.prot.lwmac.last_wakeup,
RTT_US_TO_TICKS(GNRC_LWMAC_WAKEUP_DURATION_US));
rtt_set_alarm(alarm, rtt_cb, (void *) GNRC_LWMAC_EVENT_RTT_SLEEP_PENDING);
gnrc_lwmac_set_quit_tx(netif, false);
gnrc_lwmac_set_quit_rx(netif, false);
gnrc_lwmac_set_phase_backoff(netif, false);
netif->mac.rx.rx_bad_exten_count = 0;
lwmac_set_state(netif, GNRC_LWMAC_LISTENING);
break;
}
case GNRC_LWMAC_EVENT_RTT_SLEEP_PENDING: {
/* Set next wake-up timing. */
alarm = _next_inphase_event(netif->mac.prot.lwmac.last_wakeup,
RTT_US_TO_TICKS(CONFIG_GNRC_LWMAC_WAKEUP_INTERVAL_US));
rtt_set_alarm(alarm, rtt_cb, (void *) GNRC_LWMAC_EVENT_RTT_WAKEUP_PENDING);
lwmac_set_state(netif, GNRC_LWMAC_SLEEPING);
break;
}
/* Set initial wake-up alarm that starts the cycle */
case GNRC_LWMAC_EVENT_RTT_START: {
LOG_DEBUG("[LWMAC] RTT: Initialize duty cycling\n");
alarm = rtt_get_counter() + RTT_US_TO_TICKS(GNRC_LWMAC_WAKEUP_DURATION_US);
rtt_set_alarm(alarm, rtt_cb, (void *) GNRC_LWMAC_EVENT_RTT_SLEEP_PENDING);
gnrc_lwmac_set_dutycycle_active(netif, true);
break;
}
case GNRC_LWMAC_EVENT_RTT_STOP:
case GNRC_LWMAC_EVENT_RTT_PAUSE: {
rtt_clear_alarm();
LOG_DEBUG("[LWMAC] RTT: Stop duty cycling, now in state %u\n",
netif->mac.prot.lwmac.state);
gnrc_lwmac_set_dutycycle_active(netif, false);
break;
}
case GNRC_LWMAC_EVENT_RTT_RESUME: {
LOG_DEBUG("[LWMAC] RTT: Resume duty cycling\n");
rtt_clear_alarm();
alarm = _next_inphase_event(netif->mac.prot.lwmac.last_wakeup,
RTT_US_TO_TICKS(CONFIG_GNRC_LWMAC_WAKEUP_INTERVAL_US));
rtt_set_alarm(alarm, rtt_cb, (void *) GNRC_LWMAC_EVENT_RTT_WAKEUP_PENDING);
gnrc_lwmac_set_dutycycle_active(netif, true);
break;
}
default:
break;
}
}
/**
* @brief Function called by the device driver on device events
*
* @param[in] event type of event
* @param[in] data optional parameter
*/
static void _lwmac_event_cb(netdev_t *dev, netdev_event_t event)
{
gnrc_netif_t *netif = (gnrc_netif_t *) dev->context;
if (event == NETDEV_EVENT_ISR) {
msg_t msg;
msg.type = NETDEV_MSG_TYPE_EVENT;
msg.content.ptr = (void *) netif;
if (msg_send(&msg, netif->pid) <= 0) {
LOG_WARNING("WARNING: [LWMAC] gnrc_netdev: possibly lost interrupt.\n");
}
}
else {
DEBUG("gnrc_netdev: event triggered -> %i\n", event);
switch (event) {
case NETDEV_EVENT_RX_STARTED: {
LOG_DEBUG("[LWMAC] NETDEV_EVENT_RX_STARTED\n");
gnrc_netif_set_rx_started(netif, true);
break;
}
case NETDEV_EVENT_RX_COMPLETE: {
LOG_DEBUG("[LWMAC] NETDEV_EVENT_RX_COMPLETE\n");
gnrc_pktsnip_t *pkt = netif->ops->recv(netif);
/* Prevent packet corruption when a packet is sent before the previous
* received packet has been downloaded. This happens e.g. when a timeout
* expires that causes the tx state machine to send a packet. When a
* packet arrives after the timeout, the notification is queued but the
* tx state machine continues to send and then destroys the received
* packet in the frame buffer. After completion, the queued notification
* will be handled a corrupted packet will be downloaded. Therefore
* keep track that RX_STARTED is followed by RX_COMPLETE.
*
* TODO: transceivers might have 2 frame buffers, so make this optional
*/
if (pkt == NULL) {
gnrc_netif_set_rx_started(netif, false);
break;
}
gnrc_netif_set_rx_started(netif, false);
if (!gnrc_mac_queue_rx_packet(&netif->mac.rx, 0, pkt)) {
LOG_ERROR("ERROR: [LWMAC] Can't push RX packet @ %p, memory full?\n", pkt);
gnrc_pktbuf_release(pkt);
break;
}
lwmac_schedule_update(netif);
break;
}
case NETDEV_EVENT_TX_STARTED: {
gnrc_netif_set_tx_feedback(netif, TX_FEEDBACK_UNDEF);
gnrc_netif_set_rx_started(netif, false);
break;
}
case NETDEV_EVENT_TX_COMPLETE: {
gnrc_netif_set_tx_feedback(netif, TX_FEEDBACK_SUCCESS);
gnrc_netif_set_rx_started(netif, false);
lwmac_schedule_update(netif);
break;
}
case NETDEV_EVENT_TX_NOACK: {
gnrc_netif_set_tx_feedback(netif, TX_FEEDBACK_NOACK);
gnrc_netif_set_rx_started(netif, false);
lwmac_schedule_update(netif);
break;
}
case NETDEV_EVENT_TX_MEDIUM_BUSY: {
gnrc_netif_set_tx_feedback(netif, TX_FEEDBACK_BUSY);
gnrc_netif_set_rx_started(netif, false);
lwmac_schedule_update(netif);
break;
}
default:
LOG_WARNING("WARNING: [LWMAC] Unhandled netdev event: %u\n", event);
}
}
/* Execute main state machine because something just happened*/
while (gnrc_lwmac_get_reschedule(netif)) {
lwmac_update(netif);
}
}
static int _send(gnrc_netif_t *netif, gnrc_pktsnip_t *pkt)
{
if (!gnrc_mac_queue_tx_packet(&netif->mac.tx, 0, pkt)) {
gnrc_pktbuf_release(pkt);
LOG_WARNING("WARNING: [LWMAC] TX queue full, drop packet\n");
return -ENOBUFS;
}
lwmac_schedule_update(netif);
/* Execute main state machine because something just happened*/
while (gnrc_lwmac_get_reschedule(netif)) {
lwmac_update(netif);
}
return 0;
}
static void _lwmac_msg_handler(gnrc_netif_t *netif, msg_t *msg)
{
switch (msg->type) {
/* RTT raised an interrupt */
case GNRC_LWMAC_EVENT_RTT_TYPE: {
if (gnrc_lwmac_get_dutycycle_active(netif)) {
rtt_handler(msg->content.value, netif);
lwmac_schedule_update(netif);
}
else {
LOG_DEBUG("[LWMAC] Ignoring late RTT event while duty-cycling is off\n");
}
break;
}
/* An LWMAC timeout occurred */
case GNRC_LWMAC_EVENT_TIMEOUT_TYPE: {
gnrc_lwmac_timeout_make_expire((gnrc_lwmac_timeout_t *) msg->content.ptr);
lwmac_schedule_update(netif);
break;
}
#if (GNRC_MAC_ENABLE_DUTYCYCLE_RECORD == 1)
case GNRC_MAC_TYPE_GET_DUTYCYCLE: {
/* Output LWMAC's radio duty-cycle ratio */
uint64_t duty = (uint64_t) rtt_get_counter();
duty = ((uint64_t) netif->mac.prot.lwmac.awake_duration_sum_ticks) * 100 /
(duty - (uint64_t)netif->mac.prot.lwmac.system_start_time_ticks);
printf("[LWMAC]: achieved radio duty-cycle: %u %% \n", (unsigned) duty);
break;
}
#endif
default: {
DEBUG("[LWMAC]: unknown message type 0x%04x "
"(no message handler defined)\n", msg->type);
break;
}
}
/* Execute main state machine because something just happened*/
while (gnrc_lwmac_get_reschedule(netif)) {
lwmac_update(netif);
}
}
static void _lwmac_init(gnrc_netif_t *netif)
{
netdev_t *dev;
gnrc_netif_default_init(netif);
dev = netif->dev;
dev->event_callback = _lwmac_event_cb;
/* RTT is used for scheduling wakeup */
rtt_init();
/* Store pid globally, so that IRQ can use it to send msg */
lwmac_pid = netif->pid;
/* Enable RX- and TX-started interrupts */
netopt_enable_t enable = NETOPT_ENABLE;
dev->driver->set(dev, NETOPT_RX_START_IRQ, &enable, sizeof(enable));
dev->driver->set(dev, NETOPT_TX_START_IRQ, &enable, sizeof(enable));
dev->driver->set(dev, NETOPT_TX_END_IRQ, &enable, sizeof(enable));
uint16_t src_len = IEEE802154_LONG_ADDRESS_LEN;
dev->driver->set(dev, NETOPT_SRC_LEN, &src_len, sizeof(src_len));
/* Get own address from netdev */
netif->l2addr_len = dev->driver->get(dev, NETOPT_ADDRESS_LONG,
&netif->l2addr,
IEEE802154_LONG_ADDRESS_LEN);
/* Initialize broadcast sequence number. This at least differs from board
* to board */
netif->mac.tx.bcast_seqnr = netif->l2addr[0];
/* Reset all timeouts just to be sure */
gnrc_lwmac_reset_timeouts(netif);
/* Start duty cycling */
lwmac_set_state(netif, GNRC_LWMAC_START);
#if (GNRC_MAC_ENABLE_DUTYCYCLE_RECORD == 1)
/* Start duty cycle recording */
netif->mac.prot.lwmac.system_start_time_ticks = rtt_get_counter();
netif->mac.prot.lwmac.last_radio_on_time_ticks = netif->mac.prot.lwmac.system_start_time_ticks;
netif->mac.prot.lwmac.awake_duration_sum_ticks = 0;
netif->mac.prot.lwmac.lwmac_info |= GNRC_LWMAC_RADIO_IS_ON;
#endif
}