1
0
mirror of https://github.com/RIOT-OS/RIOT.git synced 2025-01-18 12:52:44 +01:00
RIOT/cpu/stm32f0/periph/spi.c
Joakim Gebart 98c88b0549 stm32f0: Basic implementation of spi_acquire(), spi_release()
Signed-off-by: Joakim Gebart <joakim.gebart@eistec.se>
2015-01-19 19:05:23 +01:00

288 lines
6.4 KiB
C

/*
* Copyright (C) 2014 Freie Universität Berlin
*
* This file is subject to the terms and conditions of the GNU Lesser General
* Public License v2.1. See the file LICENSE in the top level directory for more
* details.
*/
/**
* @ingroup cpu_stm32f0
* @{
*
* @file
* @brief Low-level GPIO driver implementation
*
* @author Peter Kietzmann <peter.kietzmann@haw-hamburg.de>
* @author Hauke Petersen <mail@haukepetersen.de>
* @author Fabian Nack <nack@inf.fu-berlin.de>
* @author Joakim Gebart <joakim.gebart@eistec.se>
*
* @}
*/
#include "cpu.h"
#include "board.h"
#include "mutex.h"
#include "periph/spi.h"
#include "periph_conf.h"
#include "thread.h"
#include "sched.h"
/* guard file in case no SPI device is defined */
#if SPI_NUMOF
/**
* @brief Array holding one pre-initialized mutex for each SPI device
*/
static mutex_t locks[] = {
#if SPI_0_EN
[SPI_0] = MUTEX_INIT,
#endif
#if SPI_1_EN
[SPI_1] = MUTEX_INIT,
#endif
#if SPI_2_EN
[SPI_2] = MUTEX_INIT
#endif
};
int spi_init_master(spi_t dev, spi_conf_t conf, spi_speed_t speed)
{
SPI_TypeDef *spi;
/* power on the SPI device */
spi_poweron(dev);
switch (dev) {
#if SPI_0_EN
case SPI_0:
spi = SPI_0_DEV;
SPI_0_PORT_CLKEN();
break;
#endif
#if SPI_1_EN
case SPI_1:
spi = SPI_1_DEV;
SPI_1_PORT_CLKEN();
break;
#endif
default:
return -1;
}
/* configure SCK, MISO and MOSI pin */
spi_conf_pins(dev);
/* reset SPI configuration registers */
spi->CR1 = 0;
spi->CR2 = 0;
spi->I2SCFGR = 0; /* this makes sure SPI mode is selected */
/* configure bus clock speed */
switch (speed) {
case SPI_SPEED_100KHZ:
spi->CR1 |= (7 << 3); /* actual clock: 187.5KHz (lowest possible) */
break;
case SPI_SPEED_400KHZ:
spi->CR1 |= (6 << 3); /* actual clock: 375KHz */
break;
case SPI_SPEED_1MHZ:
spi->CR1 |= (4 << 3); /* actual clock: 1.5MHz */
break;
case SPI_SPEED_5MHZ:
spi->CR1 |= (2 << 3); /* actual clock: 6MHz */
break;
case SPI_SPEED_10MHZ:
spi->CR1 |= (1 << 3); /* actual clock 12MHz */
}
/* select clock polarity and clock phase */
spi->CR1 |= conf;
/* select master mode */
spi->CR1 |= SPI_CR1_MSTR;
/* the NSS (chip select) is managed purely by software */
spi->CR1 |= SPI_CR1_SSM | SPI_CR1_SSI;
/* set data-size to 8-bit */
spi->CR2 |= (0x7 << 8);
/* set FIFO threshold to set RXNE when 8 bit are received */
spi->CR2 |= SPI_CR2_FRXTH;
/* enable the SPI device */
spi->CR1 |= SPI_CR1_SPE;
return 0;
}
int spi_init_slave(spi_t dev, spi_conf_t conf, char (*cb)(char data))
{
/* due to issues with the send buffer, the master mode is not (yet) supported */
return -1;
}
int spi_conf_pins(spi_t dev)
{
GPIO_TypeDef *port;
int pin[3]; /* 3 pins: sck, miso, mosi */
int af = 0;
switch (dev) {
#if SPI_0_EN
case SPI_0:
port = SPI_0_PORT;
pin[0] = SPI_0_PIN_SCK;
pin[1] = SPI_0_PIN_MISO;
pin[2] = SPI_0_PIN_MOSI;
af = SPI_0_PIN_AF;
break;
#endif
#if SPI_1_EN
case SPI_1:
port = SPI_1_PORT;
pin[0] = SPI_1_PIN_SCK;
pin[1] = SPI_1_PIN_MISO;
pin[2] = SPI_1_PIN_MOSI;
af = SPI_1_PIN_AF;
break;
#endif
default:
return -1;
}
/* configure pins for their correct alternate function */
for (int i = 0; i < 3; i++) {
port->MODER &= ~(3 << (pin[i] * 2));
port->MODER |= (2 << (pin[i] * 2));
int hl = (pin[i] < 8) ? 0 : 1;
port->AFR[hl] &= ~(0xf << ((pin[i] - (hl * 8)) * 4));
port->AFR[hl] |= (af << ((pin[i] - (hl * 8)) * 4));
}
return 0;
}
int spi_acquire(spi_t dev)
{
if (dev >= SPI_NUMOF) {
return -1;
}
mutex_lock(&locks[dev]);
return 0;
}
int spi_release(spi_t dev)
{
if (dev >= SPI_NUMOF) {
return -1;
}
mutex_unlock(&locks[dev]);
return 0;
}
int spi_transfer_byte(spi_t dev, char out, char *in)
{
char tmp;
SPI_TypeDef *spi = 0;
switch (dev) {
#if SPI_0_EN
case SPI_0:
spi = SPI_0_DEV;
break;
#endif
#if SPI_1_EN
case SPI_1:
spi = SPI_1_DEV;
break;
#endif
default:
return 0;
}
/* wait for an eventually previous byte to be readily transferred */
while(!(spi->SR & SPI_SR_TXE));
/* put next byte into the output register */
*((volatile uint8_t *)(&spi->DR)) = (uint8_t)out;
/* wait until the current byte was successfully transferred */
while(!(spi->SR & SPI_SR_RXNE) );
/* read response byte to reset flags */
tmp = *((volatile uint8_t *)(&spi->DR));
/* 'return' response byte if wished for */
if (in) {
*in = tmp;
}
return 1;
}
int spi_transfer_bytes(spi_t dev, char *out, char *in, unsigned int length)
{
char res;
int count = 0;
for (int i = 0; i < length; i++) {
if (out) {
count += spi_transfer_byte(dev, out[i], &res);
}
else {
count += spi_transfer_byte(dev, 0, &res);
}
if (in) {
in[i] = res;
}
}
return count;
}
int spi_transfer_reg(spi_t dev, uint8_t reg, char out, char *in)
{
spi_transfer_byte(dev, reg, 0);
return spi_transfer_byte(dev, out, in);
}
int spi_transfer_regs(spi_t dev, uint8_t reg, char *out, char *in, unsigned int length)
{
spi_transfer_byte(dev, reg, 0);
return spi_transfer_bytes(dev, out, in, length);
}
void spi_transmission_begin(spi_t dev, char reset_val)
{
/* slave mode is not (yet) supported */
}
void spi_poweron(spi_t dev)
{
switch (dev) {
#if SPI_0_EN
case SPI_0:
SPI_0_CLKEN();
break;
#endif
#if SPI_1_EN
case SPI_1:
SPI_1_CLKEN();
break;
#endif
}
}
void spi_poweroff(spi_t dev)
{
switch (dev) {
#if SPI_0_EN
case SPI_0:
while (SPI_0_DEV->SR & SPI_SR_BSY);
SPI_0_CLKDIS();
break;
#endif
#if SPI_1_EN
case SPI_1:
while (SPI_1_DEV->SR & SPI_SR_BSY);
SPI_1_CLKDIS();
break;
#endif
}
}
#endif /* SPI_NUMOF */