1
0
mirror of https://github.com/RIOT-OS/RIOT.git synced 2025-01-18 12:52:44 +01:00
RIOT/cpu/samd21/periph/timer.c
2015-02-18 13:52:48 +01:00

378 lines
8.6 KiB
C

/*
* Copyright (C) 2014 Freie Universität Berlin
*
* This file is subject to the terms and conditions of the GNU Lesser
* General Public License v2.1. See the file LICENSE in the top level
* directory for more details.
*/
/**
* @ingroup driver_periph
* @{
*
* @file timer.c
* @brief Low-level timer driver implementation
*
* @author Thomas Eichinger <thomas.eichinger@fu-berlin.de>
*
* @}
*/
#include <stdlib.h>
#include <stdio.h>
#include "board.h"
#include "cpu.h"
#include "periph/timer.h"
#include "periph_conf.h"
#include "sched.h"
#include "thread.h"
#define ENABLE_DEBUG (0)
#include "debug.h"
typedef struct {
void (*cb)(int);
} timer_conf_t;
/**
* @brief Timer state memory
*/
timer_conf_t config[TIMER_NUMOF];
/**
* @brief Setup the given timer
*/
int timer_init(tim_t dev, unsigned int us_per_ticks, void (*callback)(int))
{
/* configure GCLK0 to feed TC3, TC4 and TC5 */;
GCLK->CLKCTRL.reg = (uint16_t)((GCLK_CLKCTRL_CLKEN | GCLK_CLKCTRL_GEN_GCLK0 | (TC3_GCLK_ID << GCLK_CLKCTRL_ID_Pos)));
while (GCLK->STATUS.bit.SYNCBUSY);
/* TC4 and TC5 share the same channel */
GCLK->CLKCTRL.reg = (uint16_t)((GCLK_CLKCTRL_CLKEN | GCLK_CLKCTRL_GEN_GCLK0 | (TC4_GCLK_ID << GCLK_CLKCTRL_ID_Pos)));
while (GCLK->STATUS.bit.SYNCBUSY);
/* select the timer and enable the timer specific peripheral clocks */
switch (dev) {
#if TIMER_0_EN
case TIMER_0:
if (TIMER_0_DEV.CTRLA.bit.ENABLE) {
return 0;
}
PM->APBCMASK.reg |= PM_APBCMASK_TC3;
/* reset timer */
TIMER_0_DEV.CTRLA.bit.SWRST = 1;
while (TIMER_0_DEV.CTRLA.bit.SWRST);
/* choosing 16 bit mode */
TIMER_0_DEV.CTRLA.bit.MODE = TC_CTRLA_MODE_COUNT16_Val;
/* sourced by 8MHz with Presc 64 results in 125kHz clk */
TIMER_0_DEV.CTRLA.bit.PRESCALER = TC_CTRLA_PRESCALER_DIV64_Val;
/* choose normal frequency operation */
TIMER_0_DEV.CTRLA.bit.WAVEGEN = TC_CTRLA_WAVEGEN_NFRQ_Val;
break;
#endif
#if TIMER_1_EN
case TIMER_1:
if (TIMER_1_DEV.CTRLA.bit.ENABLE) {
return 0;
}
PM->APBCMASK.reg |= PM_APBCMASK_TC4;
/* reset timer */
TIMER_1_DEV.CTRLA.bit.SWRST = 1;
while (TIMER_1_DEV.CTRLA.bit.SWRST);
TIMER_1_DEV.CTRLA.bit.MODE = TC_CTRLA_MODE_COUNT32_Val;
/* sourced by 8MHz with Presc 8 results in 1Mhz clk */
TIMER_1_DEV.CTRLA.bit.PRESCALER = TC_CTRLA_PRESCALER_DIV8_Val;
/* choose normal frequency operation */
TIMER_1_DEV.CTRLA.bit.WAVEGEN = TC_CTRLA_WAVEGEN_NFRQ_Val;
break;
#endif
case TIMER_UNDEFINED:
default:
return -1;
}
/* save callback */
config[dev].cb = callback;
/* enable interrupts for given timer */
timer_irq_enable(dev);
timer_start(dev);
return 0;
}
int timer_set(tim_t dev, int channel, unsigned int timeout)
{
return timer_set_absolute(dev, channel, timer_read(dev) + timeout);
}
int timer_set_absolute(tim_t dev, int channel, unsigned int value)
{
DEBUG("Setting timer %i channel %i to %i\n", dev, channel, value);
/* get timer base register address */
switch (dev) {
#if TIMER_0_EN
case TIMER_0:
/* set timeout value */
switch (channel) {
case 0:
TIMER_0_DEV.INTFLAG.bit.MC0 = 1;
TIMER_0_DEV.CC[0].reg = value;
TIMER_0_DEV.INTENSET.bit.MC0 = 1;
break;
case 1:
TIMER_0_DEV.INTFLAG.bit.MC1 = 1;
TIMER_0_DEV.CC[1].reg = value;
TIMER_0_DEV.INTENSET.bit.MC1 = 1;
break;
default:
return -1;
}
break;
#endif
#if TIMER_1_EN
case TIMER_1:
/* set timeout value */
switch (channel) {
case 0:
TIMER_1_DEV.INTFLAG.bit.MC0 = 1;
TIMER_1_DEV.CC[0].reg = value;
TIMER_1_DEV.INTENSET.bit.MC0 = 1;
break;
case 1:
TIMER_1_DEV.INTFLAG.bit.MC1 = 1;
TIMER_1_DEV.CC[1].reg = value;
TIMER_1_DEV.INTENSET.bit.MC1 = 1;
break;
default:
return -1;
}
break;
#endif
case TIMER_UNDEFINED:
default:
return -1;
}
return 1;
}
int timer_clear(tim_t dev, int channel)
{
/* get timer base register address */
switch (dev) {
#if TIMER_0_EN
case TIMER_0:
switch (channel) {
case 0:
TIMER_0_DEV.INTFLAG.bit.MC0 = 1;
TIMER_0_DEV.INTENCLR.bit.MC0 = 1;
break;
case 1:
TIMER_0_DEV.INTFLAG.bit.MC1 = 1;
TIMER_0_DEV.INTENCLR.bit.MC1 = 1;
break;
default:
return -1;
}
break;
#endif
#if TIMER_1_EN
case TIMER_1:
switch (channel) {
case 0:
TIMER_1_DEV.INTFLAG.bit.MC0 = 1;
TIMER_1_DEV.INTENCLR.bit.MC0 = 1;
break;
case 1:
TIMER_1_DEV.INTFLAG.bit.MC1 = 1;
TIMER_1_DEV.INTENCLR.bit.MC1 = 1;
break;
default:
return -1;
}
break;
#endif
case TIMER_UNDEFINED:
default:
return -1;
}
return 1;
}
unsigned int timer_read(tim_t dev)
{
switch (dev) {
#if TIMER_0_EN
case TIMER_0:
/* request syncronisation */
TIMER_0_DEV.READREQ.reg = TC_READREQ_RREQ | TC_READREQ_ADDR(0x10);
while (TIMER_0_DEV.STATUS.bit.SYNCBUSY);
return TIMER_0_DEV.COUNT.reg;
break;
#endif
#if TIMER_1_EN
case TIMER_1:
/* request syncronisation */
TIMER_1_DEV.READREQ.reg = TC_READREQ_RREQ | TC_READREQ_ADDR(0x10);
while (TIMER_1_DEV.STATUS.bit.SYNCBUSY);
return TIMER_1_DEV.COUNT.reg;
break;
#endif
default:
return 0;
}
}
void timer_stop(tim_t dev)
{
switch (dev) {
#if TIMER_0_EN
case TIMER_0:
TIMER_0_DEV.CTRLA.bit.ENABLE = 0;
break;
#endif
#if TIMER_1_EN
case TIMER_1:
TIMER_1_DEV.CTRLA.bit.ENABLE = 0;
break;
#endif
case TIMER_UNDEFINED:
break;
}
}
void timer_start(tim_t dev)
{
switch (dev) {
#if TIMER_0_EN
case TIMER_0:
TIMER_0_DEV.CTRLA.bit.ENABLE = 1;
break;
#endif
#if TIMER_1_EN
case TIMER_1:
TIMER_1_DEV.CTRLA.bit.ENABLE = 1;
break;
#endif
case TIMER_UNDEFINED:
break;
}
}
void timer_irq_enable(tim_t dev)
{
switch (dev) {
#if TIMER_0_EN
case TIMER_0:
NVIC_EnableIRQ(TC3_IRQn);
break;
#endif
#if TIMER_1_EN
case TIMER_1:
NVIC_EnableIRQ(TC4_IRQn);
break;
#endif
case TIMER_UNDEFINED:
break;
}
}
void timer_irq_disable(tim_t dev)
{
switch (dev) {
#if TIMER_0_EN
case TIMER_0:
NVIC_DisableIRQ(TC3_IRQn);
break;
#endif
#if TIMER_1_EN
case TIMER_1:
NVIC_DisableIRQ(TC4_IRQn);
break;
#endif
case TIMER_UNDEFINED:
break;
}
}
void timer_reset(tim_t dev)
{
switch (dev) {
#if TIMER_0_EN
case TIMER_0:
TIMER_0_DEV.CTRLA.bit.SWRST = 1;
break;
#endif
#if TIMER_1_EN
case TIMER_1:
TIMER_1_DEV.CTRLA.bit.SWRST = 1;
break;
#endif
case TIMER_UNDEFINED:
break;
}
}
#if TIMER_0_EN
void TIMER_0_ISR(void)
{
if (TIMER_0_DEV.INTFLAG.bit.MC0 && TIMER_0_DEV.INTENSET.bit.MC0) {
if(config[TIMER_0].cb) {
TIMER_0_DEV.INTFLAG.bit.MC0 = 1;
TIMER_0_DEV.INTENCLR.reg = TC_INTENCLR_MC0;
config[TIMER_0].cb(0);
}
}
else if (TIMER_0_DEV.INTFLAG.bit.MC1 && TIMER_0_DEV.INTENSET.bit.MC1) {
if(config[TIMER_0].cb) {
TIMER_0_DEV.INTFLAG.bit.MC1 = 1;
TIMER_0_DEV.INTENCLR.reg = TC_INTENCLR_MC1;
config[TIMER_0].cb(1);
}
}
if (sched_context_switch_request) {
thread_yield();
}
}
#endif /* TIMER_0_EN */
#if TIMER_1_EN
void TIMER_1_ISR(void)
{
if (TIMER_1_DEV.INTFLAG.bit.MC0 && TIMER_1_DEV.INTENSET.bit.MC0) {
if (config[TIMER_1].cb) {
TIMER_1_DEV.INTFLAG.bit.MC0 = 1;
TIMER_1_DEV.INTENCLR.reg = TC_INTENCLR_MC0;
config[TIMER_1].cb(0);
}
}
else if (TIMER_1_DEV.INTFLAG.bit.MC1 && TIMER_1_DEV.INTENSET.bit.MC1) {
if(config[TIMER_1].cb) {
TIMER_1_DEV.INTFLAG.bit.MC1 = 1;
TIMER_1_DEV.INTENCLR.reg = TC_INTENCLR_MC1;
config[TIMER_1].cb(1);
}
}
if (sched_context_switch_request) {
thread_yield();
}
}
#endif /* TIMER_1_EN */