1
0
mirror of https://github.com/RIOT-OS/RIOT.git synced 2025-01-18 12:52:44 +01:00
RIOT/sys/net/application_layer/gcoap/gcoap.c
Michel Rottleuthner 45a84af346 gcoap: clear observe state on RST response to notification
In order to properly handle an observe cancellation of a client, the server has to keep track of the notification MIDs (to be able to match an RST to a notification), see [RFC7641, 3.6 Cancellation](https://www.rfc-editor.org/rfc/rfc7641.html#section-3.6) for mor details. An alternative to this would be to make either the client send an explicit observe deregister request, or make the server send the next notification via CON (which hten allows matching of the RST due to the CON state).
2024-02-08 15:48:32 +01:00

1952 lines
70 KiB
C

/*
* Copyright (c) 2015-2020 Ken Bannister. All rights reserved.
* 2019 Freie Universität Berlin
*
* This file is subject to the terms and conditions of the GNU Lesser
* General Public License v2.1. See the file LICENSE in the top level
* directory for more details.
*/
/**
* @ingroup net_gcoap
* @{
*
* @file
* @brief GNRC's implementation of CoAP protocol
*
* Runs a thread (_pid) to manage request/response messaging.
*
* @author Ken Bannister <kb2ma@runbox.com>
* @author Hauke Petersen <hauke.petersen@fu-berlin.de>
*/
#include <errno.h>
#include <stdint.h>
#include <stdatomic.h>
#include <string.h>
#include "assert.h"
#include "net/coap.h"
#include "net/gcoap.h"
#include "net/gcoap/forward_proxy.h"
#include "net/nanocoap/cache.h"
#include "net/sock/async/event.h"
#include "net/sock/util.h"
#include "mutex.h"
#include "random.h"
#include "thread.h"
#include "ztimer.h"
#if IS_USED(MODULE_GCOAP_DTLS)
#include "net/sock/dtls.h"
#include "net/credman.h"
#include "net/dsm.h"
#endif
#define ENABLE_DEBUG 0
#include "debug.h"
/* Sentinel value indicating that no immediate response is required */
#define NO_IMMEDIATE_REPLY (-1)
/* End of the range to pick a random timeout */
#define TIMEOUT_RANGE_END (CONFIG_COAP_ACK_TIMEOUT_MS * CONFIG_COAP_RANDOM_FACTOR_1000 / 1000)
/* Internal functions */
static void *_event_loop(void *arg);
static void _on_sock_udp_evt(sock_udp_t *sock, sock_async_flags_t type, void *arg);
static void _process_coap_pdu(gcoap_socket_t *sock, sock_udp_ep_t *remote, sock_udp_aux_tx_t *aux,
uint8_t *buf, size_t len, bool truncated);
static int _tl_init_coap_socket(gcoap_socket_t *sock, gcoap_socket_type_t type);
static ssize_t _tl_send(gcoap_socket_t *sock, const void *data, size_t len,
const sock_udp_ep_t *remote, sock_udp_aux_tx_t *aux);
static ssize_t _tl_authenticate(gcoap_socket_t *sock, const sock_udp_ep_t *remote,
uint32_t timeout);
static ssize_t _well_known_core_handler(coap_pkt_t* pdu, uint8_t *buf, size_t len,
coap_request_ctx_t *ctx);
static void _cease_retransmission(gcoap_request_memo_t *memo);
static size_t _handle_req(gcoap_socket_t *sock, coap_pkt_t *pdu, uint8_t *buf,
size_t len, sock_udp_ep_t *remote);
static void _expire_request(gcoap_request_memo_t *memo);
static gcoap_request_memo_t* _find_req_memo_by_mid(const sock_udp_ep_t *remote,
uint16_t mid);
static gcoap_request_memo_t* _find_req_memo_by_token(const sock_udp_ep_t *remote,
const uint8_t *token, size_t tkl);
static gcoap_request_memo_t* _find_req_memo_by_pdu_token(const coap_pkt_t *src_pdu,
const sock_udp_ep_t *remote);
static int _find_resource(gcoap_socket_type_t tl_type,
coap_pkt_t *pdu,
const coap_resource_t **resource_ptr,
gcoap_listener_t **listener_ptr);
static int _find_observer(sock_udp_ep_t **observer, sock_udp_ep_t *remote);
static int _find_obs_memo(gcoap_observe_memo_t **memo, sock_udp_ep_t *remote,
coap_pkt_t *pdu);
static void _find_obs_memo_resource(gcoap_observe_memo_t **memo,
const coap_resource_t *resource);
static void _check_and_expire_obs_memo_last_mid(sock_udp_ep_t *remote,
uint16_t last_notify_mid);
static nanocoap_cache_entry_t *_cache_lookup_memo(gcoap_request_memo_t *cache_key);
static void _cache_process(gcoap_request_memo_t *memo,
coap_pkt_t *pdu);
static ssize_t _cache_build_response(nanocoap_cache_entry_t *ce, coap_pkt_t *pdu,
uint8_t *buf, size_t len);
static void _receive_from_cache_cb(void *arg);
static int _request_matcher_default(gcoap_listener_t *listener,
const coap_resource_t **resource,
coap_pkt_t *pdu);
#if IS_USED(MODULE_GCOAP_DTLS)
static void _on_sock_dtls_evt(sock_dtls_t *sock, sock_async_flags_t type, void *arg);
static void _dtls_free_up_session(void *arg);
#endif
/* Internal variables */
const coap_resource_t _default_resources[] = {
{ "/.well-known/core", COAP_GET, _well_known_core_handler, NULL },
};
static gcoap_listener_t _default_listener = {
&_default_resources[0],
ARRAY_SIZE(_default_resources),
GCOAP_SOCKET_TYPE_UNDEF,
NULL,
NULL,
_request_matcher_default
};
/* Container for the state of gcoap itself */
typedef struct {
mutex_t lock; /* Shares state attributes safely */
gcoap_listener_t *listeners; /* List of registered listeners */
gcoap_request_memo_t open_reqs[CONFIG_GCOAP_REQ_WAITING_MAX];
/* Storage for open requests; if first
byte of an entry is zero, the entry
is available */
atomic_uint next_message_id; /* Next message ID to use */
sock_udp_ep_t observers[CONFIG_GCOAP_OBS_CLIENTS_MAX];
/* Observe clients; allows reuse for
observe memos */
gcoap_observe_memo_t observe_memos[CONFIG_GCOAP_OBS_REGISTRATIONS_MAX];
/* Observed resource registrations */
uint8_t resend_bufs[CONFIG_GCOAP_RESEND_BUFS_MAX][CONFIG_GCOAP_PDU_BUF_SIZE];
/* Buffers for PDU for request resends;
if first byte of an entry is zero,
the entry is available */
} gcoap_state_t;
static gcoap_state_t _coap_state = {
.listeners = &_default_listener,
};
static kernel_pid_t _pid = KERNEL_PID_UNDEF;
static char _msg_stack[GCOAP_STACK_SIZE];
static event_queue_t _queue;
static uint8_t _listen_buf[CONFIG_GCOAP_PDU_BUF_SIZE];
static sock_udp_t _sock_udp;
static event_callback_t _receive_from_cache;
#if IS_USED(MODULE_GCOAP_DTLS)
/* DTLS variables and definitions */
#define SOCK_DTLS_CLIENT_TAG (2)
static sock_udp_t _sock_dtls_base;
static sock_dtls_t _sock_dtls;
static kernel_pid_t _auth_waiting_thread;
static event_timeout_t _dtls_session_free_up_tmout;
static event_callback_t _dtls_session_free_up_tmout_cb;
#endif
/* Event loop for gcoap _pid thread. */
static void *_event_loop(void *arg)
{
(void)arg;
sock_udp_ep_t local;
memset(&local, 0, sizeof(sock_udp_ep_t));
/* FIXME: Once the problems with IPv4/IPv6 dual stack use in RIOT are fixed, adapt these lines
* (and e.g. use AF_UNSPEC) */
#ifdef SOCK_HAS_IPV4
local.family = AF_INET;
#endif
#ifdef SOCK_HAS_IPV6
local.family = AF_INET6;
#endif
local.netif = SOCK_ADDR_ANY_NETIF;
local.port = CONFIG_GCOAP_PORT;
int res = sock_udp_create(&_sock_udp, &local, NULL, 0);
if (res < 0) {
DEBUG("gcoap: cannot create sock: %d\n", res);
return 0;
}
event_queue_init(&_queue);
sock_udp_event_init(&_sock_udp, &_queue, _on_sock_udp_evt, NULL);
if (IS_USED(MODULE_GCOAP_DTLS)) {
#if IS_USED(MODULE_GCOAP_DTLS)
local.port = CONFIG_GCOAPS_PORT;
if (sock_udp_create(&_sock_dtls_base, &local, NULL, 0)) {
DEBUG("gcoap: error creating DTLS transport sock\n");
return 0;
}
if (sock_dtls_create(&_sock_dtls, &_sock_dtls_base,
CREDMAN_TAG_EMPTY,
SOCK_DTLS_1_2, SOCK_DTLS_SERVER) < 0) {
DEBUG("gcoap: error creating DTLS sock\n");
sock_udp_close(&_sock_dtls_base);
return 0;
}
sock_dtls_event_init(&_sock_dtls, &_queue, _on_sock_dtls_evt,
NULL);
#endif
}
event_loop(&_queue);
return 0;
}
#if IS_USED(MODULE_GCOAP_DTLS)
/* Handles DTLS socket events from the event queue */
static void _on_sock_dtls_evt(sock_dtls_t *sock, sock_async_flags_t type, void *arg) {
(void)arg;
gcoap_socket_t socket = { .type = GCOAP_SOCKET_TYPE_DTLS, .socket.dtls = sock};
if (type & SOCK_ASYNC_CONN_RECV) {
ssize_t res = sock_dtls_recv(sock, &socket.ctx_dtls_session,
_listen_buf, sizeof(_listen_buf),
CONFIG_GCOAP_DTLS_HANDSHAKE_TIMEOUT_MSEC);
if (res != -SOCK_DTLS_HANDSHAKE) {
DEBUG("gcoap: could not establish DTLS session: %" PRIdSIZE "\n", res);
sock_dtls_session_destroy(sock, &socket.ctx_dtls_session);
return;
}
dsm_state_t prev_state = dsm_store(sock, &socket.ctx_dtls_session,
SESSION_STATE_ESTABLISHED, false);
/* If session is already stored and the state was SESSION_STATE_HANDSHAKE
before, the handshake has been initiated internally by a gcoap client request
and another thread is waiting for the handshake. Send message to the
waiting thread to inform about established session */
if (prev_state == SESSION_STATE_HANDSHAKE) {
msg_t msg = { .type = DTLS_EVENT_CONNECTED };
msg_send(&msg, _auth_waiting_thread);
} else if (prev_state == NO_SPACE) {
/* No space in session management. Should not happen. If it occurs,
we lost track of sessions */
DEBUG("gcoap: no space in session management. We lost track of sessions!");
sock_dtls_session_destroy(sock, &socket.ctx_dtls_session);
}
/* If not enough session slots left: set timeout to free up session */
uint8_t minimum_free = CONFIG_GCOAP_DTLS_MINIMUM_AVAILABLE_SESSIONS;
if (dsm_get_num_available_slots() < minimum_free)
{
uint32_t timeout = CONFIG_GCOAP_DTLS_MINIMUM_AVAILABLE_SESSIONS_TIMEOUT_MSEC;
event_callback_init(&_dtls_session_free_up_tmout_cb,
_dtls_free_up_session, NULL);
event_timeout_ztimer_init(&_dtls_session_free_up_tmout, ZTIMER_MSEC, &_queue,
&_dtls_session_free_up_tmout_cb.super);
event_timeout_set(&_dtls_session_free_up_tmout, timeout);
}
}
if (type & SOCK_ASYNC_CONN_FIN) {
if (sock_dtls_get_event_session(sock, &socket.ctx_dtls_session)) {
/* Session is already destroyed, only remove it from dsm */
dsm_remove(sock, &socket.ctx_dtls_session);
} else {
puts("gcoap: A session was closed, but the corresponding session " \
"could not be retrieved from the socket!");
return;
}
sock_udp_ep_t ep;
sock_dtls_session_get_udp_ep(&socket.ctx_dtls_session, &ep);
/* Remove all memos of the concerned session. TODO: oberservable memos! */
for (int i = 0; i < CONFIG_GCOAP_REQ_WAITING_MAX; i++) {
if (_coap_state.open_reqs[i].state == GCOAP_MEMO_UNUSED) {
continue;
}
gcoap_request_memo_t *memo = &_coap_state.open_reqs[i];
if (sock_udp_ep_equal(&memo->remote_ep, &ep)) {
_expire_request(memo);
event_timeout_clear(&memo->resp_evt_tmout);
}
}
}
if (type & SOCK_ASYNC_MSG_RECV) {
ssize_t res = sock_dtls_recv(sock, &socket.ctx_dtls_session, _listen_buf,
sizeof(_listen_buf), 0);
if (res <= 0) {
DEBUG("gcoap: DTLS recv failure: %" PRIdSIZE "\n", res);
return;
}
sock_udp_ep_t ep;
sock_dtls_session_get_udp_ep(&socket.ctx_dtls_session, &ep);
/* Truncated DTLS messages would already have gotten lost at verification */
_process_coap_pdu(&socket, &ep, NULL, _listen_buf, res, false);
}
}
/* Timeout function to free up a session when too many session slots are occupied */
static void _dtls_free_up_session(void *arg) {
(void)arg;
sock_dtls_session_t session;
uint8_t minimum_free = CONFIG_GCOAP_DTLS_MINIMUM_AVAILABLE_SESSIONS;
if (dsm_get_num_available_slots() < minimum_free) {
if (dsm_get_least_recently_used_session(&_sock_dtls, &session) != -1) {
/* free up session */
dsm_remove(&_sock_dtls, &session);
sock_dtls_session_destroy(&_sock_dtls, &session);
}
}
}
#endif /* MODULE_GCOAP_DTLS */
/* Handles UDP socket events from the event queue. */
static void _on_sock_udp_evt(sock_udp_t *sock, sock_async_flags_t type, void *arg)
{
(void)arg;
sock_udp_ep_t remote;
if (type & SOCK_ASYNC_MSG_RECV) {
void *stackbuf;
void *buf_ctx = NULL;
bool truncated = false;
size_t cursor = 0;
sock_udp_aux_rx_t aux_in = {
.flags = SOCK_AUX_GET_LOCAL,
};
/* The zero-copy _buf API is not used to its full potential here -- we
* still copy out data in what is a manual version of sock_udp_recv,
* but this gives the direly needed overflow information.
*
* A version that actually doesn't copy would vastly change the way
* gcoap passes the buffer to be read from and written into to the
* handler. Also, given that neither nanocoap nor the handler expects
* to gather scattered data, it'd need to rely on the data coming in a
* single slice (but that may be a realistic assumption).
*/
while (true) {
ssize_t res = sock_udp_recv_buf_aux(sock, &stackbuf, &buf_ctx, 0, &remote, &aux_in);
if (res < 0) {
DEBUG("gcoap: udp recv failure: %" PRIdSIZE "\n", res);
return;
}
if (res == 0) {
break;
}
if (cursor + res > sizeof(_listen_buf)) {
res = sizeof(_listen_buf) - cursor;
truncated = true;
}
memcpy(&_listen_buf[cursor], stackbuf, res);
cursor += res;
}
/* make sure we reply with the same address that the request was
* destined for -- except in the multicast case */
sock_udp_aux_tx_t *aux_out_ptr;
sock_udp_aux_tx_t aux_out = {
.flags = SOCK_AUX_SET_LOCAL,
.local = aux_in.local,
};
if (sock_udp_ep_is_multicast(&aux_in.local)) {
/* This eventually gets passed to sock_udp_send_aux, where NULL
* simply does not set any flags */
aux_out_ptr = NULL;
} else {
aux_out_ptr = &aux_out;
}
gcoap_socket_t socket = {
.type = GCOAP_SOCKET_TYPE_UDP,
.socket.udp = sock,
};
_process_coap_pdu(&socket, &remote, aux_out_ptr, _listen_buf, cursor, truncated);
}
}
/* Processes and evaluates the coap pdu */
static void _process_coap_pdu(gcoap_socket_t *sock, sock_udp_ep_t *remote, sock_udp_aux_tx_t *aux,
uint8_t *buf, size_t len, bool truncated)
{
coap_pkt_t pdu;
gcoap_request_memo_t *memo = NULL;
/* Code paths that necessitate a response on the message layer can set a
* response type here (COAP_TYPE_RST or COAP_TYPE_ACK). If set, at the end
* of the function there will be
* * that value will be put in the code field,
* * token length cleared,
* * code set to EMPTY, and
* * the message is returned with the rest of its header intact.
*/
int8_t messagelayer_emptyresponse_type = NO_IMMEDIATE_REPLY;
ssize_t res = coap_parse(&pdu, buf, len);
if (res < 0) {
DEBUG("gcoap: parse failure: %" PRIdSIZE "\n", res);
/* If a response, can't clear memo, but it will timeout later.
*
* There are *some* error cases in which we could continue (eg. all
* sorts of "packet ends mid-options" in truncated cases, and maybe
* also when the maximum option count is exceeded to at least respond
* with Bad Request), but these would likely require incompatible
* changes to nanocoap.
*/
return;
}
if (coap_get_type(&pdu) == COAP_TYPE_RST) {
DEBUG("gcoap: received RST, expiring potentially existing memo\n");
memo = _find_req_memo_by_mid(remote, pdu.hdr->id);
if (memo) {
event_timeout_clear(&memo->resp_evt_tmout);
_expire_request(memo);
}
/* check if this RST is due to the client not being interested
* in receiving observe notifications anymore. */
_check_and_expire_obs_memo_last_mid(remote, coap_get_id(&pdu));
}
/* validate class and type for incoming */
unsigned code_class = coap_get_code_class(&pdu);
switch (code_class) {
/* incoming request or empty */
case COAP_CLASS_REQ:
if (coap_get_code_raw(&pdu) == COAP_CODE_EMPTY) {
/* ping request */
if (coap_get_type(&pdu) == COAP_TYPE_CON) {
messagelayer_emptyresponse_type = COAP_TYPE_RST;
DEBUG("gcoap: Answering empty CON request with RST\n");
} else if (coap_get_type(&pdu) == COAP_TYPE_ACK) {
memo = _find_req_memo_by_mid(remote, pdu.hdr->id);
if ((memo != NULL) && (memo->send_limit != GCOAP_SEND_LIMIT_NON)) {
DEBUG("gcoap: empty ACK processed, stopping retransmissions\n");
_cease_retransmission(memo);
} else {
DEBUG("gcoap: empty ACK matches no known CON, ignoring\n");
}
} else {
DEBUG("gcoap: Ignoring empty non-CON request\n");
}
}
/* normal request */
else if (coap_get_type(&pdu) == COAP_TYPE_NON
|| coap_get_type(&pdu) == COAP_TYPE_CON) {
size_t pdu_len;
if (truncated) {
/* TBD: Set a Size1 */
pdu_len = gcoap_response(&pdu, _listen_buf, sizeof(_listen_buf),
COAP_CODE_REQUEST_ENTITY_TOO_LARGE);
} else {
pdu_len = _handle_req(sock, &pdu, _listen_buf,
sizeof(_listen_buf), remote);
}
if (pdu_len > 0) {
ssize_t bytes = _tl_send(sock, _listen_buf, pdu_len, remote, aux);
if (bytes <= 0) {
DEBUG("gcoap: send response failed: %" PRIdSIZE "\n", bytes);
}
}
}
else {
DEBUG("gcoap: illegal request type: %u\n", coap_get_type(&pdu));
}
break;
/* incoming response */
case COAP_CLASS_SUCCESS:
case COAP_CLASS_CLIENT_FAILURE:
case COAP_CLASS_SERVER_FAILURE:
memo = _find_req_memo_by_pdu_token(&pdu, remote);
if (memo) {
switch (coap_get_type(&pdu)) {
case COAP_TYPE_CON:
messagelayer_emptyresponse_type = COAP_TYPE_ACK;
DEBUG("gcoap: Answering CON response with ACK\n");
/* fall through */
case COAP_TYPE_NON:
case COAP_TYPE_ACK:
if (memo->resp_evt_tmout.queue) {
event_timeout_clear(&memo->resp_evt_tmout);
}
memo->state = truncated ? GCOAP_MEMO_RESP_TRUNC : GCOAP_MEMO_RESP;
if (IS_USED(MODULE_NANOCOAP_CACHE)) {
nanocoap_cache_entry_t *ce = NULL;
if ((pdu.hdr->code == COAP_CODE_VALID) &&
(ce = _cache_lookup_memo(memo))) {
/* update max_age from response and send cached response */
uint32_t max_age = 60;
coap_opt_get_uint(&pdu, COAP_OPT_MAX_AGE, &max_age);
ce->max_age = ztimer_now(ZTIMER_SEC) + max_age;
/* copy all options and possible payload from the cached response
* to the new response */
assert((uint8_t *)pdu.hdr == &_listen_buf[0]);
if (_cache_build_response(ce, &pdu, _listen_buf,
sizeof(_listen_buf)) < 0) {
memo->state = GCOAP_MEMO_ERR;
}
if (ce->truncated) {
memo->state = GCOAP_MEMO_RESP_TRUNC;
}
}
/* TODO: resend request if VALID but no cache entry? */
else if ((pdu.hdr->code != COAP_CODE_VALID)) {
_cache_process(memo, &pdu);
}
}
bool observe_notification = coap_has_observe(&pdu);
if (memo->resp_handler) {
memo->resp_handler(memo, &pdu, remote);
}
if (memo->send_limit >= 0) { /* if confirmable */
*memo->msg.data.pdu_buf = 0; /* clear resend PDU buffer */
}
/* The memo must be kept if the response is an observe notification.
* Non-2.xx notifications indicate that the associated observe entry
* was removed on the server side. Then also free the memo here. */
if (!observe_notification || (code_class != COAP_CLASS_SUCCESS)) {
/* setting the state to unused frees (drops) the memo entry */
memo->state = GCOAP_MEMO_UNUSED;
}
break;
default:
DEBUG("gcoap: illegal response type: %u\n", coap_get_type(&pdu));
break;
}
}
else {
DEBUG("gcoap: msg not found for ID: %u\n", coap_get_id(&pdu));
if (coap_get_type(&pdu) == COAP_TYPE_CON) {
/* we might run into this if an ACK to a sender got lost
* see https://datatracker.ietf.org/doc/html/rfc7252#section-5.3.2 */
messagelayer_emptyresponse_type = COAP_TYPE_RST;
DEBUG("gcoap: Answering unknown CON response with RST to "
"shut up sender\n");
} else {
/* if the response was a (NON) observe notification and there is no
* matching request, the server must be informed that this node is
* no longer interested in this notification. */
if (coap_has_observe(&pdu)) {
messagelayer_emptyresponse_type = COAP_TYPE_RST;
}
}
}
break;
default:
DEBUG("gcoap: illegal code class: %u\n", coap_get_code_class(&pdu));
}
if (messagelayer_emptyresponse_type != NO_IMMEDIATE_REPLY) {
coap_hdr_set_type(pdu.hdr, (uint8_t)messagelayer_emptyresponse_type);
coap_hdr_set_code(pdu.hdr, COAP_CODE_EMPTY);
/* Set the token length to 0, preserving the CoAP version as it was and
* the empty message type that was just set.
*
* FIXME: Introduce an internal function to set or truncate the token
* */
pdu.hdr->ver_t_tkl &= 0xf0;
ssize_t bytes = _tl_send(sock, buf, sizeof(coap_hdr_t), remote, aux);
if (bytes <= 0) {
DEBUG("gcoap: empty response failed: %" PRIdSIZE "\n", bytes);
}
}
}
/* Handles response timeout for a request; resend confirmable if needed. */
static void _on_resp_timeout(void *arg) {
gcoap_request_memo_t *memo = (gcoap_request_memo_t *)arg;
/* no retries remaining */
if ((memo->send_limit == GCOAP_SEND_LIMIT_NON) || (memo->send_limit == 0)) {
_expire_request(memo);
}
/* reduce retries remaining, double timeout and resend */
else {
memo->send_limit--;
#ifdef CONFIG_GCOAP_NO_RETRANS_BACKOFF
unsigned i = 0;
#else
unsigned i = CONFIG_COAP_MAX_RETRANSMIT - memo->send_limit;
#endif
uint32_t timeout = (uint32_t)CONFIG_COAP_ACK_TIMEOUT_MS << i;
#if CONFIG_COAP_RANDOM_FACTOR_1000 > 1000
uint32_t end = (uint32_t)TIMEOUT_RANGE_END << i;
timeout = random_uint32_range(timeout, end);
#endif
event_timeout_set(&memo->resp_evt_tmout, timeout);
if (memo->state == GCOAP_MEMO_WAIT) {
/* See _cease_retransmission: Still going through the timeouts and
* rescheduling, but not actually sending any more */
return;
}
ssize_t bytes = _tl_send(&memo->socket, memo->msg.data.pdu_buf,
memo->msg.data.pdu_len, &memo->remote_ep, NULL);
if (bytes <= 0) {
DEBUG("gcoap: sock resend failed: %" PRIdSIZE "\n", bytes);
_expire_request(memo);
}
}
}
/* Change the retransmission of the memo such that no requests are sent any more.
*
* This is used in response to an empty ACK.
*
* The current implementation does not touch the timers, but merely sets the
* memo's state to GCOAP_MEMO_WAIT. This approach needs less complex code at
* the cost of the remaining `send_limit` timers firing and some memory not
* being freed until the actual response arrives.
*
* An alternative implementation would stop the timeouts, and either free the
* whole memo if it has no response handler, or calculate the remaining timeout
* from `send_limit` to set a final timeout then. In that case, it might also
* free the gcoap_resend_t data and move it back into hdr_buf (along with a
* change in the discriminator for that). (That's not an option with the
* current design because the discriminator is the send_limit field, which is
* still used to count down).
*
* @param[inout] memo The memo indicating the pending request
*
* @pre The @p memo is GCOAP_MEMO_RETRANSMIT or GCOAP_MEMO_WAIT, and its
* send_limit is not GCOAP_SEND_LIMIT_NON.
*/
static void _cease_retransmission(gcoap_request_memo_t *memo) {
memo->state = GCOAP_MEMO_WAIT;
/* there is also no response handler to wait for => expire memo */
if (memo->resp_handler == NULL) {
event_timeout_clear(&memo->resp_evt_tmout);
_expire_request(memo);
}
}
/*
* Main request handler: generates response PDU in the provided buffer.
*
* Caller must finish the PDU and send it.
*
* return length of response pdu, or < 0 if can't handle
*/
static size_t _handle_req(gcoap_socket_t *sock, coap_pkt_t *pdu, uint8_t *buf,
size_t len, sock_udp_ep_t *remote)
{
const coap_resource_t *resource = NULL;
gcoap_listener_t *listener = NULL;
sock_udp_ep_t *observer = NULL;
gcoap_observe_memo_t *memo = NULL;
gcoap_observe_memo_t *resource_memo = NULL;
switch (_find_resource(sock->type, pdu, &resource, &listener)) {
case GCOAP_RESOURCE_WRONG_METHOD:
return gcoap_response(pdu, buf, len, COAP_CODE_METHOD_NOT_ALLOWED);
case GCOAP_RESOURCE_NO_PATH:
return gcoap_response(pdu, buf, len, COAP_CODE_PATH_NOT_FOUND);
case GCOAP_RESOURCE_FOUND:
/* find observe registration for resource */
_find_obs_memo_resource(&resource_memo, resource);
break;
case GCOAP_RESOURCE_ERROR:
default:
return gcoap_response(pdu, buf, len, COAP_CODE_INTERNAL_SERVER_ERROR);
break;
}
if (coap_get_observe(pdu) == COAP_OBS_REGISTER) {
/* lookup remote+token */
int empty_slot = _find_obs_memo(&memo, remote, pdu);
/* validate re-registration request */
if (resource_memo != NULL) {
if (memo != NULL) {
if (memo != resource_memo) {
/* reject token already used for a different resource */
memo = NULL;
coap_clear_observe(pdu);
DEBUG("gcoap: can't change resource for token\n");
}
/* otherwise OK to re-register resource with the same token */
}
else if ((sock->type == resource_memo->socket.type) &&
sock_udp_ep_equal(remote, resource_memo->observer)) {
/* accept new token for resource */
memo = resource_memo;
}
}
/* initialize new registration request */
if ((memo == NULL) && coap_has_observe(pdu)) {
/* verify resource not already registered (for another endpoint) */
if ((empty_slot >= 0) && (resource_memo == NULL)) {
int obs_slot = _find_observer(&observer, remote);
/* cache new observer */
if (observer == NULL) {
if (obs_slot >= 0) {
observer = &_coap_state.observers[obs_slot];
memcpy(observer, remote, sizeof(sock_udp_ep_t));
} else {
DEBUG("gcoap: can't register observer\n");
}
}
if (observer != NULL) {
memo = &_coap_state.observe_memos[empty_slot];
memo->observer = observer;
}
}
if (memo == NULL) {
coap_clear_observe(pdu);
DEBUG("gcoap: can't register observe memo\n");
}
}
/* finish registration */
if (memo != NULL) {
/* resource may be assigned here if it is not already registered */
memo->resource = resource;
memo->token_len = coap_get_token_len(pdu);
memo->socket = *sock;
if (memo->token_len) {
memcpy(&memo->token[0], coap_get_token(pdu), memo->token_len);
}
DEBUG("gcoap: Registered observer for: %s\n", memo->resource->path);
}
} else if (coap_get_observe(pdu) == COAP_OBS_DEREGISTER) {
_find_obs_memo(&memo, remote, pdu);
/* clear memo, and clear observer if no other memos */
if (memo != NULL) {
DEBUG("gcoap: Deregistering observer for: %s\n", memo->resource->path);
memo->observer = NULL;
memo = NULL;
_find_obs_memo(&memo, remote, NULL);
if (memo == NULL) {
_find_observer(&observer, remote);
if (observer != NULL) {
observer->family = AF_UNSPEC;
}
}
}
coap_clear_observe(pdu);
} else if (coap_has_observe(pdu)) {
/* bogus request; don't respond */
DEBUG("gcoap: Observe value unexpected: %" PRIu32 "\n", coap_get_observe(pdu));
return -1;
}
ssize_t pdu_len;
coap_request_ctx_t ctx = {
.resource = resource,
.tl_type = (uint32_t)sock->type,
.remote = remote,
};
pdu_len = resource->handler(pdu, buf, len, &ctx);
if (pdu_len < 0) {
pdu_len = gcoap_response(pdu, buf, len,
COAP_CODE_INTERNAL_SERVER_ERROR);
}
return pdu_len;
}
static int _request_matcher_default(gcoap_listener_t *listener,
const coap_resource_t **resource,
coap_pkt_t *pdu)
{
uint8_t uri[CONFIG_NANOCOAP_URI_MAX];
int ret = GCOAP_RESOURCE_NO_PATH;
if (coap_get_uri_path(pdu, uri) <= 0) {
/* The Uri-Path options are longer than
* CONFIG_NANOCOAP_URI_MAX, and thus do not match anything
* that could be found by this handler. */
return GCOAP_RESOURCE_NO_PATH;
}
coap_method_flags_t method_flag = coap_method2flag(
coap_get_code_detail(pdu));
for (size_t i = 0; i < listener->resources_len; i++) {
*resource = &listener->resources[i];
int res = coap_match_path(*resource, uri);
/* URI mismatch */
if (res != 0) {
continue;
}
/* potential match, check for method */
if (! ((*resource)->methods & method_flag)) {
/* record wrong method error for next iteration, in case
* another resource with the same URI and correct method
* exists */
ret = GCOAP_RESOURCE_WRONG_METHOD;
continue;
}
else {
return GCOAP_RESOURCE_FOUND;
}
}
return ret;
}
/*
* Searches listener registrations for the resource matching the path in a PDU.
*
* param[in] tl_type -- transport the request for the resource came over.
* param[in] pdu -- the PDU to check the resource for
* param[out] resource_ptr -- found resource
* param[out] listener_ptr -- listener for found resource
* return `GCOAP_RESOURCE_FOUND` if the resource was found,
* `GCOAP_RESOURCE_WRONG_METHOD` if a resource was found but the method
* code didn't match and `GCOAP_RESOURCE_NO_PATH` if no matching
* resource was found.
*/
static int _find_resource(gcoap_socket_type_t tl_type,
coap_pkt_t *pdu,
const coap_resource_t **resource_ptr,
gcoap_listener_t **listener_ptr)
{
int ret = GCOAP_RESOURCE_NO_PATH;
/* Find path for CoAP msg among listener resources and execute callback. */
gcoap_listener_t *listener = _coap_state.listeners;
while (listener) {
const coap_resource_t *resource;
int res;
/* only makes sense to check if non-UDP transports are supported,
* so check if module is used first. */
if (IS_USED(MODULE_GCOAP_DTLS) &&
(listener->tl_type != GCOAP_SOCKET_TYPE_UNDEF) &&
!(listener->tl_type & tl_type)) {
listener = listener->next;
continue;
}
res = listener->request_matcher(listener, &resource, pdu);
/* check next resource on mismatch */
if (res == GCOAP_RESOURCE_NO_PATH) {
listener = listener->next;
continue;
}
/* found a resource, but methods do not match */
else if (res == GCOAP_RESOURCE_WRONG_METHOD) {
ret = GCOAP_RESOURCE_WRONG_METHOD;
listener = listener->next;
continue;
}
/* found a suitable resource */
else if (res == GCOAP_RESOURCE_FOUND) {
*resource_ptr = resource;
*listener_ptr = listener;
return GCOAP_RESOURCE_FOUND;
}
/* res is probably GCOAP_RESOURCE_ERROR or some other
* unhandled error */
else {
return GCOAP_RESOURCE_ERROR;
}
}
return ret;
}
/*
* Finds the memo for an outstanding request within the _coap_state.open_reqs
* array. Matches on remote endpoint and token.
*
* remote[in] Remote endpoint to match
* token[in] Token to match
* tkl[in] Length of the token in bytes
*
* return Registered request memo, or NULL if not found
*/
static gcoap_request_memo_t* _find_req_memo_by_token(const sock_udp_ep_t *remote,
const uint8_t *token, size_t tkl)
{
/* no need to initialize struct; we only care about buffer contents below */
coap_pkt_t memo_pdu_data;
coap_pkt_t *memo_pdu = &memo_pdu_data;
for (int i = 0; i < CONFIG_GCOAP_REQ_WAITING_MAX; i++) {
if (_coap_state.open_reqs[i].state == GCOAP_MEMO_UNUSED) {
continue;
}
gcoap_request_memo_t *memo = &_coap_state.open_reqs[i];
memo_pdu->hdr = gcoap_request_memo_get_hdr(memo);
if (coap_get_token_len(memo_pdu) == tkl) {
if ((memcmp(token, coap_get_token(memo_pdu), tkl) == 0)
&& (sock_udp_ep_equal(&memo->remote_ep, remote)
/* Multicast addresses are not considered in matching responses */
|| sock_udp_ep_is_multicast(&memo->remote_ep)
)) {
return memo;
}
}
}
return NULL;
}
/*
* Utility wrapper for _find_req_memo_by_token(), using the pdu token.
* Finds the memo for an outstanding request within the _coap_state.open_reqs
* array. Matches on remote endpoint and token of the pdu.
*
* src_pdu[in] PDU which holds the token for matching
* remote[in] Remote endpoint to match
*
* return Registered request memo, or NULL if not found
*/
static gcoap_request_memo_t* _find_req_memo_by_pdu_token(
const coap_pkt_t *src_pdu,
const sock_udp_ep_t *remote)
{
unsigned tkl = coap_get_token_len(src_pdu);
uint8_t *token = coap_get_token(src_pdu);
return _find_req_memo_by_token(remote, token, tkl);
}
/*
* Finds the memo for an outstanding request within the _coap_state.open_reqs
* array. Matches on remote endpoint and message ID.
*
* remote[in] Remote endpoint to match
* mid[in] Message ID to match
*
* return Registered request memo, or NULL if not found
*/
static gcoap_request_memo_t* _find_req_memo_by_mid(const sock_udp_ep_t *remote, uint16_t mid)
{
for (int i = 0; i < CONFIG_GCOAP_REQ_WAITING_MAX; i++) {
if (_coap_state.open_reqs[i].state == GCOAP_MEMO_UNUSED) {
continue;
}
gcoap_request_memo_t *memo = &_coap_state.open_reqs[i];
if ((mid == gcoap_request_memo_get_hdr(memo)->id) &&
sock_udp_ep_equal(&memo->remote_ep, remote)) {
return memo;
}
}
return NULL;
}
/* Calls handler callback on receipt of a timeout message. */
static void _expire_request(gcoap_request_memo_t *memo)
{
DEBUG("coap: received timeout message\n");
if ((memo->state == GCOAP_MEMO_RETRANSMIT) || (memo->state == GCOAP_MEMO_WAIT)) {
memo->state = GCOAP_MEMO_TIMEOUT;
/* Pass response to handler */
if (memo->resp_handler) {
coap_pkt_t req;
req.hdr = gcoap_request_memo_get_hdr(memo);
memo->resp_handler(memo, &req, NULL);
}
if (memo->send_limit != GCOAP_SEND_LIMIT_NON) {
*memo->msg.data.pdu_buf = 0; /* clear resend buffer */
}
memo->state = GCOAP_MEMO_UNUSED;
}
else {
/* Response already handled; timeout must have fired while response */
/* was in queue. */
}
}
/*
* Handler for /.well-known/core. Lists registered handlers, except for
* /.well-known/core itself.
*/
static ssize_t _well_known_core_handler(coap_pkt_t* pdu, uint8_t *buf, size_t len,
coap_request_ctx_t *ctx)
{
(void)ctx;
gcoap_resp_init(pdu, buf, len, COAP_CODE_CONTENT);
coap_opt_add_format(pdu, COAP_FORMAT_LINK);
ssize_t plen = coap_opt_finish(pdu, COAP_OPT_FINISH_PAYLOAD);
plen += gcoap_get_resource_list(pdu->payload, (size_t)pdu->payload_len,
COAP_FORMAT_LINK,
(gcoap_socket_type_t)coap_request_ctx_get_tl_type(ctx));
return plen;
}
/*
* Find registered observer for a remote address and port.
*
* observer[out] -- Registered observer, or NULL if not found
* remote[in] -- Endpoint to match
*
* return Index of empty slot, suitable for registering new observer; or -1
* if no empty slots. Undefined if observer found.
*/
static int _find_observer(sock_udp_ep_t **observer, sock_udp_ep_t *remote)
{
int empty_slot = -1;
*observer = NULL;
for (unsigned i = 0; i < CONFIG_GCOAP_OBS_CLIENTS_MAX; i++) {
if (_coap_state.observers[i].family == AF_UNSPEC) {
empty_slot = i;
}
else if (sock_udp_ep_equal(&_coap_state.observers[i], remote)) {
*observer = &_coap_state.observers[i];
break;
}
}
return empty_slot;
}
/*
* Find registered observe memo for a remote address and token.
*
* memo[out] -- Registered observe memo, or NULL if not found
* remote[in] -- Endpoint for address to match
* pdu[in] -- PDU for token to match, or NULL to match only on remote address
*
* return Index of empty slot, suitable for registering new memo; or -1 if no
* empty slots. Undefined if memo found.
*/
static int _find_obs_memo(gcoap_observe_memo_t **memo, sock_udp_ep_t *remote,
coap_pkt_t *pdu)
{
int empty_slot = -1;
*memo = NULL;
sock_udp_ep_t *remote_observer = NULL;
_find_observer(&remote_observer, remote);
for (unsigned i = 0; i < CONFIG_GCOAP_OBS_REGISTRATIONS_MAX; i++) {
if (_coap_state.observe_memos[i].observer == NULL) {
empty_slot = i;
continue;
}
if (_coap_state.observe_memos[i].observer == remote_observer) {
if (pdu == NULL) {
*memo = &_coap_state.observe_memos[i];
break;
}
unsigned memo_token_len = _coap_state.observe_memos[i].token_len;
if (memo_token_len == coap_get_token_len(pdu)
&& memo_token_len
&& memcmp(&_coap_state.observe_memos[i].token[0],
coap_get_token(pdu),
memo_token_len) == 0) {
*memo = &_coap_state.observe_memos[i];
break;
}
}
}
return empty_slot;
}
/*
* Checks if an observe memo exists for which a notification with the given
* msg ID was sent out. If so, it expires the memo and frees up the
* observer entry if needed.
*
* remote[in] The remote to check for a stale observe memo.
* last_notify_mid[in] The message ID of the last notification send to the
* given remote.
*/
static void _check_and_expire_obs_memo_last_mid(sock_udp_ep_t *remote,
uint16_t last_notify_mid)
{
/* find observer entry from remote */
sock_udp_ep_t *observer;
_find_observer(&observer, remote);
if (observer) {
gcoap_observe_memo_t *stale_obs_memo = NULL;
/* get the observe memo corresponding to the notification with the
* given msg ID. */
for (unsigned i = 0; i < CONFIG_GCOAP_OBS_REGISTRATIONS_MAX; i++) {
if (_coap_state.observe_memos[i].observer == NULL) {
continue;
}
if ((_coap_state.observe_memos[i].observer == observer) &&
(last_notify_mid == _coap_state.observe_memos[i].last_msgid)) {
stale_obs_memo = &_coap_state.observe_memos[i];
break;
}
}
if (stale_obs_memo) {
stale_obs_memo->observer = NULL; /* clear memo */
/* check if the observer has more observe memos registered... */
stale_obs_memo = NULL;
_find_obs_memo(&stale_obs_memo, observer, NULL);
if (stale_obs_memo == NULL) {
/* ... if not -> also free the observer entry */
observer->family = AF_UNSPEC;
}
}
}
}
/*
* Find registered observe memo for a resource.
*
* memo[out] -- Registered observe memo, or NULL if not found
* resource[in] -- Resource to match
*/
static void _find_obs_memo_resource(gcoap_observe_memo_t **memo,
const coap_resource_t *resource)
{
*memo = NULL;
for (int i = 0; i < CONFIG_GCOAP_OBS_REGISTRATIONS_MAX; i++) {
if (_coap_state.observe_memos[i].observer != NULL
&& _coap_state.observe_memos[i].resource == resource) {
*memo = &_coap_state.observe_memos[i];
break;
}
}
}
/*
* Transport layer functions
*/
static int _tl_init_coap_socket(gcoap_socket_t *sock, gcoap_socket_type_t type)
{
switch (type) {
#if !IS_USED(MODULE_GCOAP_DTLS)
case GCOAP_SOCKET_TYPE_UNDEF:
#endif
case GCOAP_SOCKET_TYPE_UDP:
sock->type = GCOAP_SOCKET_TYPE_UDP;
sock->socket.udp = &_sock_udp;
break;
#if IS_USED(MODULE_GCOAP_DTLS)
case GCOAP_SOCKET_TYPE_UNDEF:
case GCOAP_SOCKET_TYPE_DTLS:
sock->type = GCOAP_SOCKET_TYPE_DTLS;
sock->socket.dtls = &_sock_dtls;
break;
#else
default:
return -1;
#endif
}
return 0;
}
static ssize_t _tl_send(gcoap_socket_t *sock, const void *data, size_t len,
const sock_udp_ep_t *remote, sock_udp_aux_tx_t *aux)
{
ssize_t res = -1;
switch (sock->type) {
case GCOAP_SOCKET_TYPE_UDP:
res = sock_udp_send_aux(sock->socket.udp, data, len, remote, aux);
break;
#if IS_USED(MODULE_GCOAP_DTLS)
case GCOAP_SOCKET_TYPE_DTLS:
/* prepare session */
sock_dtls_session_set_udp_ep(&sock->ctx_dtls_session, remote);
dsm_state_t session_state = dsm_store(sock->socket.dtls,
&sock->ctx_dtls_session,
SESSION_STATE_HANDSHAKE,
true);
if (session_state == NO_SPACE) {
return -1;
}
/* send application data */
res = sock_dtls_send(sock->socket.dtls, &sock->ctx_dtls_session, data, len,
SOCK_NO_TIMEOUT);
switch (res) {
case -EHOSTUNREACH:
case -ENOTCONN:
case 0:
DEBUG("gcoap: DTLS sock not connected or remote unreachable. "
"Destroying session.\n");
dsm_remove(sock->socket.dtls, &sock->ctx_dtls_session);
sock_dtls_session_destroy(sock->socket.dtls, &sock->ctx_dtls_session);
break;
default:
/* Temporary error. Keeping the DTLS session */
break;
}
break;
#endif
default:
DEBUG("gcoap: undefined socket type\n");
break;
}
return res;
}
static ssize_t _tl_authenticate(gcoap_socket_t *sock, const sock_udp_ep_t *remote,
uint32_t timeout)
{
#if !IS_USED(MODULE_GCOAP_DTLS)
(void)sock;
(void)remote;
(void)timeout;
return 0;
#else
int res;
if (sock->type != GCOAP_SOCKET_TYPE_DTLS) {
return 0;
}
/* prepare session */
sock_dtls_session_set_udp_ep(&sock->ctx_dtls_session, remote);
dsm_state_t session_state = dsm_store(sock->socket.dtls, &sock->ctx_dtls_session,
SESSION_STATE_HANDSHAKE, true);
if (session_state == SESSION_STATE_ESTABLISHED) {
return 0;
}
if (session_state == NO_SPACE) {
DEBUG("gcoap: no space in dsm\n");
return -ENOTCONN;
}
/* start handshake */
_auth_waiting_thread = thread_getpid();
res = sock_dtls_session_init(sock->socket.dtls, remote, &sock->ctx_dtls_session);
if (res == 0) {
/* session already exists */
_auth_waiting_thread = -1;
return res;
}
msg_t msg;
bool is_timed_out = false;
do {
uint32_t start = ztimer_now(ZTIMER_MSEC);
res = ztimer_msg_receive_timeout(ZTIMER_MSEC, &msg, timeout);
/* ensure whole timeout time for the case we receive other messages than
* DTLS_EVENT_CONNECTED */
if (timeout != SOCK_NO_TIMEOUT) {
uint32_t diff = (ztimer_now(ZTIMER_MSEC) - start);
timeout = (diff > timeout) ? 0: timeout - diff;
is_timed_out = (res < 0) || (timeout == 0);
}
}
while (!is_timed_out && (msg.type != DTLS_EVENT_CONNECTED));
if (is_timed_out && (msg.type != DTLS_EVENT_CONNECTED)) {
DEBUG("gcoap: authentication timed out\n");
dsm_remove(sock->socket.dtls, &sock->ctx_dtls_session);
sock_dtls_session_destroy(sock->socket.dtls, &sock->ctx_dtls_session);
return -ENOTCONN;
}
return 0;
#endif
}
static nanocoap_cache_entry_t *_cache_lookup_memo(gcoap_request_memo_t *memo)
{
#if IS_USED(MODULE_NANOCOAP_CACHE)
/* cache_key in memo is pre-processor guarded so we need to as well */
return nanocoap_cache_key_lookup(memo->cache_key);
#else
(void)memo;
return NULL;
#endif
}
static void _cache_process(gcoap_request_memo_t *memo,
coap_pkt_t *pdu)
{
if (!IS_USED(MODULE_NANOCOAP_CACHE)) {
return;
}
coap_pkt_t req;
req.hdr = gcoap_request_memo_get_hdr(memo);
size_t pdu_len = pdu->payload_len +
(pdu->payload - (uint8_t *)pdu->hdr);
#if IS_USED(MODULE_NANOCOAP_CACHE)
nanocoap_cache_entry_t *ce;
/* cache_key in memo is pre-processor guarded so we need to as well */
if ((ce = nanocoap_cache_process(memo->cache_key, coap_get_code_raw(&req), pdu, pdu_len))) {
ce->truncated = (memo->state == GCOAP_MEMO_RESP_TRUNC);
}
#else
(void)req;
(void)pdu_len;
#endif
}
static ssize_t _cache_build_response(nanocoap_cache_entry_t *ce, coap_pkt_t *pdu,
uint8_t *buf, size_t len)
{
if (!IS_USED(MODULE_NANOCOAP_CACHE)) {
return -ENOTSUP;
}
if (len < ce->response_len) {
return -ENOBUFS;
}
/* Use the same code from the cached content. Use other header
* fields from the incoming request */
gcoap_resp_init(pdu, buf, len, ce->response_pkt.hdr->code);
/* copy all options and possible payload from the cached response
* to the new response */
unsigned header_len_req = coap_get_total_hdr_len(pdu);
unsigned header_len_cached = coap_get_total_hdr_len(&ce->response_pkt);
unsigned opt_payload_len = ce->response_len - header_len_cached;
/* copy all options and possible payload from the cached response
* to the new response */
memcpy((buf + header_len_req),
(ce->response_buf + header_len_cached),
opt_payload_len);
/* parse into pdu including all options and payload pointers etc */
coap_parse(pdu, buf, header_len_req + opt_payload_len);
return ce->response_len;
}
static void _copy_hdr_from_req_memo(coap_pkt_t *pdu, gcoap_request_memo_t *memo)
{
coap_pkt_t req_pdu;
req_pdu.hdr = gcoap_request_memo_get_hdr(memo);
memcpy(pdu->hdr, req_pdu.hdr, coap_get_total_hdr_len(&req_pdu));
}
static void _receive_from_cache_cb(void *ctx)
{
if (!IS_USED(MODULE_NANOCOAP_CACHE)) {
return;
}
gcoap_request_memo_t *memo = ctx;
nanocoap_cache_entry_t *ce = NULL;
if ((ce = _cache_lookup_memo(memo))) {
if (memo->resp_handler) {
/* copy header from request so gcoap_resp_init in _cache_build_response works correctly
*/
coap_pkt_t pdu = { .hdr = (coap_hdr_t *)_listen_buf };
_copy_hdr_from_req_memo(&pdu, memo);
if (_cache_build_response(ce, &pdu, _listen_buf, sizeof(_listen_buf)) >= 0) {
memo->state = (ce->truncated) ? GCOAP_MEMO_RESP_TRUNC : GCOAP_MEMO_RESP;
memo->resp_handler(memo, &pdu, &memo->remote_ep);
if (memo->send_limit >= 0) { /* if confirmable */
*memo->msg.data.pdu_buf = 0; /* clear resend PDU buffer */
}
memo->state = GCOAP_MEMO_UNUSED;
}
}
}
else {
/* oops we somehow lost the cache entry */
DEBUG("gcoap: cache entry was lost\n");
if (memo->resp_handler) {
memo->state = GCOAP_MEMO_ERR;
memo->resp_handler(memo, NULL, &memo->remote_ep);
}
}
}
static void _update_memo_cache_key(gcoap_request_memo_t *memo, uint8_t *cache_key)
{
#if IS_USED(MODULE_NANOCOAP_CACHE)
if (memo) {
/* memo->cache_key is guarded by MODULE_NANOCOAP_CACHE, so preprocessor
* magic is needed */
memcpy(memo->cache_key, cache_key, CONFIG_NANOCOAP_CACHE_KEY_LENGTH);
}
#else
(void)memo;
(void)cache_key;
#endif
}
static bool _cache_lookup(gcoap_request_memo_t *memo,
coap_pkt_t *pdu,
nanocoap_cache_entry_t **ce)
{
if (IS_USED(MODULE_NANOCOAP_CACHE)) {
uint8_t cache_key[SHA256_DIGEST_LENGTH];
ztimer_now_t now = ztimer_now(ZTIMER_SEC);
nanocoap_cache_key_generate(pdu, cache_key);
*ce = nanocoap_cache_key_lookup(cache_key);
_update_memo_cache_key(memo, cache_key);
/* cache hit, methods are equal, and cache entry is not stale */
if (*ce &&
((*ce)->request_method == coap_get_code_raw(pdu)) &&
!nanocoap_cache_entry_is_stale(*ce, now)) {
return true;
}
}
return false;
}
static ssize_t _cache_check(const uint8_t *buf, size_t len,
gcoap_request_memo_t *memo,
bool *cache_hit)
{
if (!IS_USED(MODULE_NANOCOAP_CACHE)) {
return len;
}
coap_pkt_t req;
nanocoap_cache_entry_t *ce = NULL;
/* XXX cast to const might cause problems here :-/ */
ssize_t res = coap_parse(&req, (uint8_t *)buf, len);
if (res < 0) {
DEBUG("gcoap: parse failure for cache lookup: %" PRIdSIZE "\n", res);
return -EINVAL;
}
if (coap_get_code_class(&req) != COAP_CLASS_REQ) {
/* Not a request so ignore, as gcoap_req_send might have been used with
* its undocumented function to send a CON response from submodule */
return len;
}
*cache_hit = _cache_lookup(memo, &req, &ce);
if (!(*cache_hit) && (ce != NULL)) {
/* Cache entry was found, but it is stale. Try to validate */
uint8_t *resp_etag;
/* Searching for more ETags might become necessary in the future */
ssize_t resp_etag_len = coap_opt_get_opaque(&ce->response_pkt, COAP_OPT_ETAG, &resp_etag);
/* ETag found, but don't act on illegal ETag size */
if ((resp_etag_len > 0) && ((size_t)resp_etag_len <= COAP_ETAG_LENGTH_MAX)) {
uint8_t *tmp_etag;
ssize_t tmp_etag_len = coap_opt_get_opaque(&req, COAP_OPT_ETAG, &tmp_etag);
if (tmp_etag_len >= resp_etag_len) {
/* peak length without padding */
size_t rem_len = (len - (tmp_etag + tmp_etag_len - buf));
if ((tmp_etag < buf) || (tmp_etag > (buf + len)) ||
(rem_len > (len - ((tmp_etag + COAP_ETAG_LENGTH_MAX) - buf)))) {
DEBUG("gcoap: invalid calculated padding length (%lu) for ETag injection "
"during cache lookup.\n", (long unsigned)rem_len);
/* something fishy happened in the request. Better don't return cache entry */
*cache_hit = false;
#if IS_USED(MODULE_NANOCOAP_CACHE)
memset(memo->cache_key, 0, sizeof(memo->cache_key));
#endif
return -EINVAL;
}
memcpy(tmp_etag, resp_etag, resp_etag_len);
/* shorten ETag option if necessary */
if ((size_t)resp_etag_len < COAP_ETAG_LENGTH_MAX) {
/* now we need the start of the option (not its value) so dig once more */
uint8_t *start = coap_find_option(&req, COAP_OPT_ETAG);
/* option length must always be <= COAP_ETAG_LENGTH_MAX = 8 < 12, so the length
* is encoded in the first byte, see also RFC 7252, section 3.1 */
*start &= 0xf0;
/* first if around here should make sure we are <= 8 < 0xf, so we don't need to
* bitmask resp_etag_len */
*start |= (uint8_t)resp_etag_len;
/* remove padding */
memmove(tmp_etag + resp_etag_len, tmp_etag + COAP_ETAG_LENGTH_MAX, rem_len);
len -= (COAP_ETAG_LENGTH_MAX - resp_etag_len);
}
}
}
else {
len = coap_opt_remove(&req, COAP_OPT_ETAG);
}
}
else {
len = coap_opt_remove(&req, COAP_OPT_ETAG);
}
return len;
}
/*
* gcoap interface functions
*/
kernel_pid_t gcoap_init(void)
{
if (_pid != KERNEL_PID_UNDEF) {
return -EEXIST;
}
_pid = thread_create(_msg_stack, sizeof(_msg_stack), THREAD_PRIORITY_MAIN - 1,
THREAD_CREATE_STACKTEST, _event_loop, NULL, "coap");
mutex_init(&_coap_state.lock);
/* Blank lists so we know if an entry is available. */
memset(&_coap_state.open_reqs[0], 0, sizeof(_coap_state.open_reqs));
memset(&_coap_state.observers[0], 0, sizeof(_coap_state.observers));
memset(&_coap_state.observe_memos[0], 0, sizeof(_coap_state.observe_memos));
memset(&_coap_state.resend_bufs[0], 0, sizeof(_coap_state.resend_bufs));
/* randomize initial value */
atomic_init(&_coap_state.next_message_id, (unsigned)random_uint32());
if (IS_USED(MODULE_NANOCOAP_CACHE)) {
nanocoap_cache_init();
}
/* initialize the forward proxy operation, if compiled */
if (IS_ACTIVE(MODULE_GCOAP_FORWARD_PROXY)) {
gcoap_forward_proxy_init();
}
#ifdef MODULE_NANOCOAP_RESOURCES
/* add CoAP resources from XFA */
XFA_USE_CONST(coap_resource_t, coap_resources_xfa);
static gcoap_listener_t _xfa_listener = {
.resources = coap_resources_xfa,
};
_xfa_listener.resources_len = XFA_LEN(coap_resource_t, coap_resources_xfa),
gcoap_register_listener(&_xfa_listener);
#endif
return _pid;
}
uint16_t gcoap_next_msg_id(void)
{
return (uint16_t)atomic_fetch_add(&_coap_state.next_message_id, 1);
}
void gcoap_register_listener(gcoap_listener_t *listener)
{
/* That item will be overridden, ensure that the user expecting different
* behavior will notice this. */
assert(listener->next == NULL);
listener->next = _coap_state.listeners;
_coap_state.listeners = listener;
if (!listener->link_encoder) {
listener->link_encoder = gcoap_encode_link;
}
if (!listener->request_matcher) {
listener->request_matcher = _request_matcher_default;
}
}
int gcoap_req_init_path_buffer(coap_pkt_t *pdu, uint8_t *buf, size_t len,
unsigned code, const char *path, size_t path_len)
{
assert((path == NULL) || (path[0] == '/'));
pdu->hdr = (coap_hdr_t *)buf;
/* generate token */
uint16_t msgid = gcoap_next_msg_id();
ssize_t res;
if (code) {
#if CONFIG_GCOAP_TOKENLEN
uint8_t token[CONFIG_GCOAP_TOKENLEN];
for (size_t i = 0; i < CONFIG_GCOAP_TOKENLEN; i += 4) {
uint32_t rand = random_uint32();
memcpy(&token[i],
&rand,
(CONFIG_GCOAP_TOKENLEN - i >= 4) ? 4 : CONFIG_GCOAP_TOKENLEN - i);
}
res = coap_build_hdr(pdu->hdr, COAP_TYPE_NON, &token[0],
CONFIG_GCOAP_TOKENLEN, code, msgid);
#else
res = coap_build_hdr(pdu->hdr, COAP_TYPE_NON, NULL,
CONFIG_GCOAP_TOKENLEN, code, msgid);
#endif
}
else {
/* ping request */
res = coap_build_hdr(pdu->hdr, COAP_TYPE_CON, NULL, 0, code, msgid);
}
coap_pkt_init(pdu, buf, len, res);
if (IS_USED(MODULE_NANOCOAP_CACHE)) {
static const uint8_t tmp[COAP_ETAG_LENGTH_MAX] = { 0 };
/* add slack to maybe add an ETag on stale cache hit later */
res = coap_opt_add_opaque(pdu, COAP_OPT_ETAG, tmp, sizeof(tmp));
}
if ((res > 0) && (path != NULL) && (path_len > 0)) {
res = coap_opt_add_uri_path_buffer(pdu, path, path_len);
}
return (res > 0) ? 0 : res;
}
int gcoap_obs_req_forget(const sock_udp_ep_t *remote, const uint8_t *token,
size_t tokenlen) {
int res = -ENOENT;
gcoap_request_memo_t *obs_req_memo;
mutex_lock(&_coap_state.lock);
/* Find existing request memo of the observe */
obs_req_memo = _find_req_memo_by_token(remote, token, tokenlen);
if (obs_req_memo) {
/* forget the existing observe memo. */
obs_req_memo->state = GCOAP_MEMO_UNUSED;
res = 0;
}
mutex_unlock(&_coap_state.lock);
return res;
}
ssize_t gcoap_req_send_tl(const uint8_t *buf, size_t len,
const sock_udp_ep_t *remote,
gcoap_resp_handler_t resp_handler, void *context,
gcoap_socket_type_t tl_type)
{
gcoap_socket_t socket = { 0 };
gcoap_request_memo_t *memo = NULL;
unsigned msg_type = (*buf & 0x30) >> 4;
uint32_t timeout = 0;
ssize_t res = 0;
bool cache_hit = false;
assert(remote != NULL);
res = _tl_init_coap_socket(&socket, tl_type);
if (res < 0) {
return -EINVAL;
}
/* Only allocate memory if necessary (i.e. if user is interested in the
* response or request is confirmable) */
if ((resp_handler != NULL) || (msg_type == COAP_TYPE_CON)) {
mutex_lock(&_coap_state.lock);
/* Find empty slot in list of open requests. */
for (int i = 0; i < CONFIG_GCOAP_REQ_WAITING_MAX; i++) {
if (_coap_state.open_reqs[i].state == GCOAP_MEMO_UNUSED) {
memo = &_coap_state.open_reqs[i];
memo->state = GCOAP_MEMO_WAIT;
break;
}
}
if (!memo) {
mutex_unlock(&_coap_state.lock);
DEBUG("gcoap: dropping request; no space for response tracking\n");
return 0;
}
memo->resp_handler = resp_handler;
memo->context = context;
memcpy(&memo->remote_ep, remote, sizeof(sock_udp_ep_t));
memo->socket = socket;
if (IS_USED(MODULE_NANOCOAP_CACHE)) {
ssize_t res = _cache_check(buf, len, memo, &cache_hit);
if (res < 0) {
return res;
}
len = res;
}
switch (msg_type) {
case COAP_TYPE_CON:
/* copy buf to resend_bufs record */
memo->msg.data.pdu_buf = NULL;
for (int i = 0; i < CONFIG_GCOAP_RESEND_BUFS_MAX; i++) {
if (!_coap_state.resend_bufs[i][0]) {
memo->msg.data.pdu_buf = &_coap_state.resend_bufs[i][0];
memcpy(memo->msg.data.pdu_buf, buf,
CONFIG_GCOAP_PDU_BUF_SIZE);
memo->msg.data.pdu_len = len;
break;
}
}
if (memo->msg.data.pdu_buf) {
memo->send_limit = CONFIG_COAP_MAX_RETRANSMIT;
timeout = (uint32_t)CONFIG_COAP_ACK_TIMEOUT_MS;
#if CONFIG_COAP_RANDOM_FACTOR_1000 > 1000
timeout = random_uint32_range(timeout, TIMEOUT_RANGE_END);
#endif
memo->state = GCOAP_MEMO_RETRANSMIT;
}
else {
memo->state = GCOAP_MEMO_UNUSED;
DEBUG("gcoap: no space for PDU in resend bufs\n");
}
break;
case COAP_TYPE_NON:
memo->send_limit = GCOAP_SEND_LIMIT_NON;
memcpy(&memo->msg.hdr_buf[0], buf, GCOAP_HEADER_MAXLEN);
timeout = CONFIG_GCOAP_NON_TIMEOUT_MSEC;
break;
default:
memo->state = GCOAP_MEMO_UNUSED;
DEBUG("gcoap: illegal msg type %u\n", msg_type);
break;
}
mutex_unlock(&_coap_state.lock);
if (memo->state == GCOAP_MEMO_UNUSED) {
return 0;
}
if (cache_hit) {
/* post to receive cache entry */
event_callback_init(&_receive_from_cache,
_receive_from_cache_cb,
memo);
event_post(&_queue, &_receive_from_cache.super);
return len;
}
}
/* check cache without memo */
else if (IS_USED(MODULE_NANOCOAP_CACHE)) {
ssize_t res = _cache_check(buf, len, NULL, &cache_hit);
if (res < 0) {
return res;
}
if (cache_hit > 0) {
return res;
}
}
_tl_init_coap_socket(&socket, tl_type);
if (IS_USED(MODULE_GCOAP_DTLS) && socket.type == GCOAP_SOCKET_TYPE_DTLS) {
res = _tl_authenticate(&socket, remote, CONFIG_GCOAP_DTLS_HANDSHAKE_TIMEOUT_MSEC);
}
/* set response timeout; may be zero for non-confirmable */
if (memo != NULL && res == 0) {
if (timeout > 0) {
event_callback_init(&memo->resp_tmout_cb, _on_resp_timeout, memo);
event_timeout_ztimer_init(&memo->resp_evt_tmout, ZTIMER_MSEC, &_queue,
&memo->resp_tmout_cb.super);
event_timeout_set(&memo->resp_evt_tmout, timeout);
}
else {
memset(&memo->resp_evt_tmout, 0, sizeof(event_timeout_t));
}
}
if (res == 0) {
res = _tl_send(&socket, buf, len, remote, NULL);
}
if (res <= 0) {
if (memo != NULL) {
if (msg_type == COAP_TYPE_CON) {
*memo->msg.data.pdu_buf = 0; /* clear resend buffer */
}
if (timeout > 0) {
event_timeout_clear(&memo->resp_evt_tmout);
}
memo->state = GCOAP_MEMO_UNUSED;
}
DEBUG("gcoap: sock send failed: %" PRIdSIZE "\n", res);
}
return ((res > 0 || res == -ENOTCONN) ? res : 0);
}
static void _add_generated_observe_option(coap_pkt_t *pdu)
{
/* generate initial notification value */
uint32_t now = ztimer_now(ZTIMER_MSEC);
pdu->observe_value = (now >> GCOAP_OBS_TICK_EXPONENT) & 0xFFFFFF;
coap_opt_add_uint(pdu, COAP_OPT_OBSERVE, pdu->observe_value);
}
int gcoap_resp_init(coap_pkt_t *pdu, uint8_t *buf, size_t len, unsigned code)
{
int header_len = coap_build_reply(pdu, code, buf, len, 0);
/* request contained no-response option or not enough space for response */
if (header_len <= 0) {
return -1;
}
pdu->options_len = 0;
pdu->payload = buf + header_len;
pdu->payload_len = len - header_len;
if (coap_get_observe(pdu) == COAP_OBS_REGISTER) {
_add_generated_observe_option(pdu);
}
return 0;
}
int gcoap_obs_init(coap_pkt_t *pdu, uint8_t *buf, size_t len,
const coap_resource_t *resource)
{
gcoap_observe_memo_t *memo = NULL;
_find_obs_memo_resource(&memo, resource);
if (memo == NULL) {
/* Unique return value to specify there is not an observer */
return GCOAP_OBS_INIT_UNUSED;
}
pdu->hdr = (coap_hdr_t *)buf;
uint16_t msgid = gcoap_next_msg_id();
ssize_t hdrlen = coap_build_hdr(pdu->hdr, COAP_TYPE_NON, &memo->token[0],
memo->token_len, COAP_CODE_CONTENT, msgid);
if (hdrlen > 0) {
coap_pkt_init(pdu, buf, len, hdrlen);
_add_generated_observe_option(pdu);
/* Store message ID of the last notification sent. This is needed
* to match a potential RST returned by a client in order to signal
* it does not recognize this notification. */
memo->last_msgid = msgid;
return GCOAP_OBS_INIT_OK;
}
else {
/* reason for negative hdrlen is not defined, so we also are vague */
return GCOAP_OBS_INIT_ERR;
}
}
size_t gcoap_obs_send(const uint8_t *buf, size_t len,
const coap_resource_t *resource)
{
gcoap_observe_memo_t *memo = NULL;
_find_obs_memo_resource(&memo, resource);
if (memo) {
ssize_t bytes = _tl_send(&memo->socket, buf, len, memo->observer, NULL);
return (size_t)((bytes > 0) ? bytes : 0);
}
else {
return 0;
}
}
uint8_t gcoap_op_state(void)
{
uint8_t count = 0;
for (int i = 0; i < CONFIG_GCOAP_REQ_WAITING_MAX; i++) {
if (_coap_state.open_reqs[i].state != GCOAP_MEMO_UNUSED) {
count++;
}
}
return count;
}
int gcoap_get_resource_list(void *buf, size_t maxlen, uint8_t cf,
gcoap_socket_type_t tl_type)
{
assert(cf == COAP_FORMAT_LINK);
gcoap_listener_t *listener = _coap_state.listeners;
char *out = (char *)buf;
size_t pos = 0;
coap_link_encoder_ctx_t ctx;
ctx.content_format = cf;
/* indicate initial link for the list */
ctx.flags = COAP_LINK_FLAG_INIT_RESLIST;
/* write payload */
for (; listener != NULL; listener = listener->next) {
if (!listener->link_encoder) {
continue;
}
/* only makes sense to check if non-UDP transports are supported,
* so check if module is used first. */
if (IS_USED(MODULE_GCOAP_DTLS) &&
(tl_type != GCOAP_SOCKET_TYPE_UNDEF) &&
(listener->tl_type != GCOAP_SOCKET_TYPE_UNDEF) &&
((listener->tl_type & GCOAP_SOCKET_TYPE_UDP) != (tl_type & GCOAP_SOCKET_TYPE_UDP)) &&
((listener->tl_type & GCOAP_SOCKET_TYPE_DTLS) != (tl_type & GCOAP_SOCKET_TYPE_DTLS))) {
continue;
}
ctx.link_pos = 0;
for (; ctx.link_pos < listener->resources_len; ctx.link_pos++) {
ssize_t res;
if (out) {
res = listener->link_encoder(&listener->resources[ctx.link_pos],
&out[pos], maxlen - pos, &ctx);
}
else {
res = listener->link_encoder(&listener->resources[ctx.link_pos],
NULL, 0, &ctx);
}
if (res > 0) {
pos += res;
ctx.flags &= ~COAP_LINK_FLAG_INIT_RESLIST;
}
else {
break;
}
}
}
return (int)pos;
}
ssize_t gcoap_encode_link(const coap_resource_t *resource, char *buf,
size_t maxlen, coap_link_encoder_ctx_t *context)
{
size_t path_len = strlen(resource->path);
/* count target separators and any link separator */
size_t exp_size = path_len + 2
+ ((context->flags & COAP_LINK_FLAG_INIT_RESLIST) ? 0 : 1);
if (buf) {
unsigned pos = 0;
if (exp_size > maxlen) {
return -1;
}
if (!(context->flags & COAP_LINK_FLAG_INIT_RESLIST)) {
buf[pos++] = ',';
}
buf[pos++] = '<';
memcpy(&buf[pos], resource->path, path_len);
buf[pos+path_len] = '>';
}
return exp_size;
}
#if IS_USED(MODULE_GCOAP_DTLS)
sock_dtls_t *gcoap_get_sock_dtls(void)
{
return &_sock_dtls;
}
#endif
/* */
void gcoap_forward_proxy_find_req_memo(gcoap_request_memo_t **memo_ptr,
coap_pkt_t *src_pdu,
const sock_udp_ep_t *remote)
{
*memo_ptr = _find_req_memo_by_pdu_token(src_pdu, remote);
}
void gcoap_forward_proxy_post_event(void *arg)
{
event_post(&_queue, arg);
}
/** @} */