1
0
mirror of https://github.com/RIOT-OS/RIOT.git synced 2025-01-18 12:52:44 +01:00
RIOT/cpu/lpc2387/i2c/i2c.c

950 lines
28 KiB
C

/*
* i2c.c - implementation of the I2C interface for the LPC2387 chip.
* Copyright (C) 2013 Zakaria Kasmi <zkasmi@inf.fu-berlin.de>
*
* This source code is licensed under the LGPLv2 license,
* See the file LICENSE for more details.
*/
/**
* @file
* @internal
* @brief The I2C interface drivers for the LPC2387 chip.
* The driver is full abstracted supporting all the i2c-interfaces
* of the LPC2387 chip. The user need only to give the requested
* i2c-interface and the transmission baudrate.
* The user can optionally give a master interrupt handler. If the
* user does not declare a handler, an appropriate interrupt is
* automatically registered for the specific i2c interface.
*
* @author Freie Universität Berlin, Computer Systems & Telematics
* @author Zakaria Kasmi <zkasmi@inf.fu-berlin.de>
* @author Marco Ziegert <ziegert@inf.fu-berlin.de>
* @author Benjamin Aschenbrenner
* @version $Revision: 3858 $
*
* @note $Id: i2c.c 3858 2013-09-02 18:11:17 kasmi $
*/
#include "lpc23xx.h"
#include "lpc2387.h"
#include "i2c.h"
#include "VIC.h"
#include "irq.h"
#include <stdio.h>
#include <stdbool.h>
#include <stdint.h>
#include <string.h>
volatile uint32_t i2c_master_state = I2C_IDLE;
volatile uint32_t i2c_slave_state = I2C_IDLE;
volatile uint32_t i2c_cmd;
volatile uint32_t i2c_mode;
volatile uint8_t i2c_master_buffer[I2C_BUFSIZE];
volatile uint32_t i2c_read_length;
volatile uint32_t i2c_write_length;
volatile uint32_t rd_index = 0;
volatile uint32_t wr_index = 0;
static void i2c_interface0_master_handler(void) __attribute__((interrupt(
"IRQ")));
static void i2c_interface1_master_handler(void) __attribute__((interrupt(
"IRQ")));
static void i2c_interface2_master_handler(void) __attribute__((interrupt(
"IRQ")));
bool i2c_initialize(uint8_t i2c_interface, uint32_t i2c_mode,
uint8_t slave_addr, uint32_t baud_rate, void *handler)
{
//puts("i2c_initialize begin...\n");
printf("i2cInterface = %d\n", i2c_interface);
i2c_clear_buffer((uint8_t *) i2c_master_buffer,
I2C_BUFSIZE * sizeof(uint8_t));
//activate power for I2C2
i2c_active_power(i2c_interface);
//select I2C2 functionality for pins x.xx (SDAx) and x.xx (SCLx)
i2c_pin_select(i2c_interface);
// clear I2CCON register flags
i2c_clear_control_register(i2c_interface);
//set baud rate
i2c_set_baud_rate(i2c_interface, baud_rate);
//set slave mode
if (i2c_mode == I2CSLAVE) {
i2c_set_slave_mode(i2c_interface, slave_addr);
}
/* Install interrupt handler */
if (!i2c_irq_handler_register(i2c_interface, handler)) {
return false;
}
i2c_initial_master_transmitter_mode(i2c_interface);
//puts("...i2c_initialize ended\n");
return (true);
}
bool i2c_transaction(uint8_t i2c_interface)
{
//puts("i2cTransaction begin...\n");
i2c_master_state = I2C_IDLE;
rd_index = 0;
wr_index = 0;
if (i2c_start(i2c_interface) != true) {
i2c_stop(i2c_interface);
puts("i2cTransaction return false...\n");
return (false);
}
// puts("entering engine main loop\n");
while (1) {
if (i2c_master_state == DATA_NACK) {
i2c_stop(i2c_interface);
break;
}
}
// puts("...i2cTransaction ended\n");
return (true);
}
bool i2c_start(uint8_t i2c_interface)
{
// puts("i2c_start begin...\n");
uint32_t timeout = 0;
bool retVal = false;
/*--- Issue a start condition ---*/
switch (i2c_interface) {
case I2C0:
I20CONSET = I2CONSET_STA; /* Set Start flag */
break;
case I2C1_0:
case I2C1_1:
I21CONSET = I2CONSET_STA; /* Set Start flag */
break;
case I2C2:
I22CONSET = I2CONSET_STA; /* Set Start flag */
}
/*--- Wait until START transmitted ---*/
while (1) {
if (i2c_master_state == I2C_STARTED) {
retVal = true;
break;
}
if (timeout >= MAX_TIMEOUT) {
puts("timeout");
retVal = false;
break;
}
timeout++;
}
//puts("...i2c_start ended\n");
return (retVal);
}
bool i2c_stop(uint8_t i2c_interface)
{
//puts("i2c_stop begin...\n");
switch (i2c_interface) {
case I2C0:
I20CONSET = I2CONSET_STO; /* Set Stop flag */
I20CONCLR = I2CONCLR_SIC; /* Clear SI flag */
/*--- Wait for STOP detected ---*/
while (I20CONSET & I2CONSET_STO)
;
break;
case I2C1_0:
case I2C1_1:
I21CONSET = I2CONSET_STO; /* Set Stop flag */
I21CONCLR = I2CONCLR_SIC; /* Clear SI flag */
/*--- Wait for STOP detected ---*/
while (I21CONSET & I2CONSET_STO)
;
break;
case I2C2:
I22CONSET = I2CONSET_STO; /* Set Stop flag */
I22CONCLR = I2CONCLR_SIC; /* Clear SI flag */
/*--- Wait for STOP detected ---*/
while (I22CONSET & I2CONSET_STO)
;
}
// puts("...i2c_stop ended\n");
return true;
}
void i2c_active_power(uint8_t i2c_interface)
{
switch (i2c_interface) {
case I2C0:
PCONP |= BIT7;
break;
case I2C1_0:
case I2C1_1:
PCONP |= BIT19;
break;
case I2C2:
PCONP |= BIT26;
}
}
//select I2C2 functionality for pins x.xx (SDAx) and x.xx (SCLx)
void i2c_pin_select(uint8_t i2cInterface)
{
switch (i2cInterface) {
case I2C0: // P0.27 SDA0, P0.28 SCL0
PINSEL1 |= BIT22 | BIT24;
PINSEL1 &= ~(BIT23 | BIT25);
break;
case I2C1_0: // P0.0 SDA1, P0.1 SCL1
PINSEL0 |= BIT0 | BIT1 | BIT2 | BIT3;
break;
case I2C1_1: // P0.19 SDA1, P0.20 SCL1
PINSEL1 |= BIT6 | BIT7 | BIT8 | BIT9;
break;
case I2C2: // P0.10 SDA2, P0.11 SCL2
PINSEL0 |= BIT21 | BIT23;
PINSEL0 &= ~(BIT20 | BIT22);
}
}
/*--- clearing of bits in the I2CON register ---*/
void i2c_clear_control_register(uint8_t i2c_interface)
{
switch (i2c_interface) {
case I2C0:
I20CONCLR = I2CONCLR_AAC | I2CONCLR_SIC | I2CONCLR_STAC |
I2CONCLR_I2ENC;
break;
case I2C1_0:
case I2C1_1:
I21CONCLR = I2CONCLR_AAC | I2CONCLR_SIC | I2CONCLR_STAC |
I2CONCLR_I2ENC;
break;
case I2C2:
I22CONCLR = I2CONCLR_AAC | I2CONCLR_SIC | I2CONCLR_STAC |
I2CONCLR_I2ENC;
}
}
void i2c_set_baud_rate(uint8_t i2c_interface, uint32_t baud_rate)
{
uint32_t pclksel = 0;
uint32_t prescale = 0;
lpc2387_pclk_scale(F_CPU, baud_rate, &pclksel, &prescale);
switch (i2c_interface) {
case I2C0:
PCLKSEL0 &= ~(BIT14 | BIT15); //clear Bits
PCLKSEL0 |= pclksel << 14; //set bits
I20SCLL = prescale / 2;
I20SCLH = prescale / 2;
break;
case I2C1_0:
case I2C1_1:
PCLKSEL1 &= ~(BIT6 | BIT7);
PCLKSEL1 |= pclksel << 6;
I21SCLL = prescale / 2;
I21SCLH = prescale / 2;
break;
case I2C2:
PCLKSEL1 &= ~(BIT20 | BIT21);
PCLKSEL1 |= pclksel << 20;
I22SCLL = prescale / 2;
I22SCLH = prescale / 2;
}
}
bool i2c_irq_handler_register(uint8_t i2c_interface, void *handler)
{
bool successful = false;
switch (i2c_interface) {
case I2C0:
if (handler == NULL) {
successful = install_irq(I2C0_INT,
(void *) i2c_interface0_master_handler,
HIGHEST_PRIORITY);
}
else {
successful = install_irq(I2C0_INT, (void *) handler,
HIGHEST_PRIORITY);
}
break;
case I2C1_0:
case I2C1_1:
if (handler == NULL) {
successful = install_irq(I2C1_INT,
(void *) i2c_interface1_master_handler,
HIGHEST_PRIORITY);
}
else {
successful = install_irq(I2C1_INT, (void *) handler,
HIGHEST_PRIORITY);
}
break;
case I2C2:
if (handler == NULL) {
successful = install_irq(I2C2_INT,
(void *) i2c_interface2_master_handler,
HIGHEST_PRIORITY);
}
else {
successful = install_irq(I2C2_INT, (void *) handler,
HIGHEST_PRIORITY);
}
}
return successful;
}
void i2c_initial_master_transmitter_mode(uint8_t i2c_interface)
{
switch (i2c_interface) {
case I2C0:
I20CONSET = I2CONSET_I2EN;
break;
case I2C1_0:
case I2C1_1:
I21CONSET = I2CONSET_I2EN;
break;
case I2C2:
I22CONSET = I2CONSET_I2EN;
}
}
bool i2c_read(uint8_t i2c_interface, uint8_t slave_addr, uint8_t reg_addr,
uint8_t *rx_buff, uint8_t rx_buff_length)
{
i2c_clear_buffer((uint8_t *) i2c_master_buffer,
I2C_BUFSIZE * sizeof(uint8_t));
i2c_write_length = 1;
i2c_read_length = rx_buff_length;
bool successful = false;
uint8_t readIndex = 3;
i2c_master_buffer[0] = (slave_addr << 1) & WRITE_ENABLE_BIT_MASK;
i2c_master_buffer[1] = reg_addr;
i2c_master_buffer[2] = ((slave_addr << 1) & WRITE_ENABLE_BIT_MASK)
| READ_ENABLE_BIT_MASK;
successful = i2c_transaction(i2c_interface);
if (successful && (rx_buff != NULL) &&
(rx_buff_length < (I2C_BUFSIZE - readIndex))) {
memcpy(rx_buff, (const uint8_t *)(i2c_master_buffer + readIndex),
sizeof(uint8_t) * rx_buff_length);
return true;
}
else {
return false;
}
}
void i2c_clear_buffer(void *ptr, uint32_t size)
{
memset(ptr, 0, size);
}
bool i2c_write(uint8_t i2c_interface, uint8_t slave_addr, uint8_t reg_addr,
uint8_t *tx_buff, uint8_t tx_buff_length)
{
//puts("[i2c.c/i2cWrite]: entered\n");
i2c_clear_buffer((uint8_t *) i2c_master_buffer,
I2C_BUFSIZE * sizeof(uint8_t));
i2c_write_length = tx_buff_length + 1;
i2c_master_buffer[0] = (slave_addr << 1) & WRITE_ENABLE_BIT_MASK;
i2c_master_buffer[1] = reg_addr;
int32_t i;
int32_t j = 0;
if ((tx_buff != NULL) && tx_buff_length < (I2C_BUFSIZE - 2)) {
for (i = 2; i < tx_buff_length + 2; i++) {
i2c_master_buffer[i] = tx_buff[j];
j++;
//printf("I2CMasterBuffer[%d] = %d\n", i, I2CMasterBuffer[i]);
}
return i2c_transaction(i2c_interface);
}
else {
puts("[i2c.c/i2cWrite]: Invalid buffer or invalid write buffer size\n");
return false;
}
}
//burst mode, the first element in the array
bool i2c_trans_receive(uint8_t i2c_interface, uint8_t slave_addr,
uint8_t *tx_buff, uint8_t tx_buff_length,
uint8_t *rx_buff, uint8_t rx_buff_length)
{
puts("[i2c.c/i2cTransReceive]: entered\n");
i2c_clear_buffer((uint8_t *) i2c_master_buffer,
I2C_BUFSIZE * sizeof(uint8_t));
i2c_write_length = tx_buff_length;
i2c_read_length = rx_buff_length;
bool successful = false;
int32_t read_index = 0;
int32_t i = 0;
if (tx_buff != NULL && (tx_buff_length > 0)) {
i2c_master_buffer[0] = (slave_addr << 1) & WRITE_ENABLE_BIT_MASK;
for (i = 1; i < tx_buff_length + 1; i++) {
if (i < I2C_BUFSIZE) {
i2c_master_buffer[i] = tx_buff[i - 1];
}
}
//enable I2C to read
if ((rx_buff_length > 0) && (i < I2C_BUFSIZE)) {
i2c_master_buffer[i] = ((slave_addr << 1) & WRITE_ENABLE_BIT_MASK)
| READ_ENABLE_BIT_MASK;
read_index = i + 1;
}
successful = i2c_transaction(i2c_interface);
if (successful && (rx_buff != NULL) && (rx_buff_length > 0)) {
memcpy(rx_buff, (const uint8_t *)(i2c_master_buffer + read_index),
sizeof(uint8_t) * rx_buff_length);
return true;
}
else {
return false;
}
}
else {
puts(
"[i2c.c/i2cRead]: the txBuff is not valid or has not a valid \
length value !\n");
return false;
}
}
/**
* @brief The interrupt handler for the I2C0 interface.
* It deals only with the master mode.
*
*/
void i2c_interface0_master_handler(void) //__irq
{
//puts("entering I2C handler function\n");
uint8_t state_value;
/* this handler deals with master read and master write only */
state_value = I20STAT;
//IENABLE; /* handles nested interrupt */
//enableIRQ();
switch (state_value) {
case 0x08: /* A Start condition is issued. */
//puts("A Start condition is issued\n");
I20DAT = i2c_master_buffer[0];
//printf("I22DAT = %lu\n", I22DAT);
I20CONCLR = (I2CONCLR_SIC | I2CONCLR_STAC);
i2c_master_state = I2C_STARTED;
break;
case 0x10: /* A repeated started is issued */
//puts("A repeated Start is issued\n");
// if ( I2CCmd == L3DG420_WHO_AM_I)
// {
// I22DAT = I2CMasterBuffer[2];
// }
I20DAT = i2c_master_buffer[2];
I20CONCLR = (I2CONCLR_SIC | I2CONCLR_STAC);
i2c_master_state = I2C_RESTARTED;
break;
case 0x18: /* Regardless, it's a ACK */
//puts("got an Ack\n");
if (i2c_master_state == I2C_STARTED) {
I20DAT = i2c_master_buffer[1 + wr_index];
wr_index++;
i2c_master_state = DATA_ACK;
}
I20CONCLR = I2CONCLR_SIC;
break;
case 0x28: /* Data byte has been transmitted, regardless ACK or NACK */
case 0x30:
//puts("Data byte has been transmitted\n");
if (wr_index != i2c_write_length) {
// this should be the last one
I20DAT = i2c_master_buffer[1 + wr_index];
if (wr_index != i2c_write_length) {
i2c_master_state = DATA_ACK;
}
else {
i2c_master_state = DATA_NACK;
I20CONSET = I2CONSET_STO; /* Set Stop flag */
if (i2c_read_length != 0) {
I20CONSET = I2CONSET_STA; /* Set Repeated-start flag */
i2c_master_state = I2C_REPEATED_START;
}
}
wr_index++;
}
else {
if (i2c_read_length != 0) {
I20CONSET = I2CONSET_STA; /* Set Repeated-start flag */
i2c_master_state = I2C_REPEATED_START;
}
else {
i2c_master_state = DATA_NACK;
I20CONSET = I2CONSET_STO; /* Set Stop flag */
}
}
I20CONCLR = I2CONCLR_SIC;
break;
case 0x40: /* Master Receive, SLA_R has been sent */
//puts("Master Receive, SLA_R has been sent!\n");
if (i2c_read_length >= 2) {
I20CONSET = I2CONSET_AA; /* assert ACK after data is received */
}
I20CONCLR = I2CONCLR_SIC;
break;
// Data byte has been received, regardless following ACK or NACK
case 0x50:
case 0x58:
//puts("Data received\n");
i2c_master_buffer[3 + rd_index] = I20DAT;
rd_index++;
if (rd_index < (i2c_read_length - 1)) {
i2c_master_state = DATA_ACK;
I20CONSET = I2CONSET_AA; /* assert ACK after data is received */
}
else {
I20CONCLR = I2CONCLR_AAC; /* NACK after data is received */
}
if (rd_index == i2c_read_length) {
rd_index = 0;
i2c_master_state = DATA_NACK;
}
I20CONCLR = I2CONCLR_SIC;
break;
case 0x20: /* regardless, it's a NACK */
case 0x48:
I20CONCLR = I2CONCLR_SIC;
i2c_master_state = DATA_NACK;
break;
case 0x38: /*
* Arbitration lost, in this example, we don't
* deal with multiple master situation
**/
//puts("Arbritration lost!\n");
default:
I20CONCLR = I2CONCLR_SIC;
break;
}
//IDISABLE;
//disableIRQ();
//puts("leave I2C handler function\n");
VICVectAddr = 0; /* Acknowledge Interrupt */
}
/**
* @brief The interrupt handler for the I2C1 interface.
* It deals only with the master mode.
*
*/
void i2c_interface1_master_handler(void) //__irq
{
//puts("entering I2C handler function\n");
uint8_t state_value;
/* this handler deals with master read and master write only */
state_value = I21STAT;
//IENABLE; /* handles nested interrupt */
//enableIRQ();
switch (state_value) {
case 0x08: /* A Start condition is issued. */
//puts("A Start condition is issued\n");
I21DAT = i2c_master_buffer[0];
//printf("I22DAT = %lu\n", I22DAT);
I21CONCLR = (I2CONCLR_SIC | I2CONCLR_STAC);
i2c_master_state = I2C_STARTED;
break;
case 0x10: /* A repeated started is issued */
//puts("A repeated Start is issued\n");
// if ( I2CCmd == L3DG420_WHO_AM_I)
// {
// I22DAT = I2CMasterBuffer[2];
// }
I21DAT = i2c_master_buffer[2];
I21CONCLR = (I2CONCLR_SIC | I2CONCLR_STAC);
i2c_master_state = I2C_RESTARTED;
break;
case 0x18: /* Regardless, it's a ACK */
//puts("got an Ack\n");
if (i2c_master_state == I2C_STARTED) {
I21DAT = i2c_master_buffer[1 + wr_index];
wr_index++;
i2c_master_state = DATA_ACK;
}
I21CONCLR = I2CONCLR_SIC;
break;
case 0x28: /* Data byte has been transmitted, regardless ACK or NACK */
case 0x30:
//puts("Data byte has been transmitted\n");
if (wr_index != i2c_write_length) {
// this should be the last one
I21DAT = i2c_master_buffer[1 + wr_index];
if (wr_index != i2c_write_length) {
i2c_master_state = DATA_ACK;
}
else {
i2c_master_state = DATA_NACK;
I21CONSET = I2CONSET_STO; /* Set Stop flag */
if (i2c_read_length != 0) {
I21CONSET = I2CONSET_STA; /* Set Repeated-start flag */
i2c_master_state = I2C_REPEATED_START;
}
}
wr_index++;
}
else {
if (i2c_read_length != 0) {
I21CONSET = I2CONSET_STA; /* Set Repeated-start flag */
i2c_master_state = I2C_REPEATED_START;
}
else {
i2c_master_state = DATA_NACK;
I21CONSET = I2CONSET_STO; /* Set Stop flag */
}
}
I21CONCLR = I2CONCLR_SIC;
break;
case 0x40: /* Master Receive, SLA_R has been sent */
//puts("Master Receive, SLA_R has been sent!\n");
if (i2c_read_length >= 2) {
I21CONSET = I2CONSET_AA; /* assert ACK after data is received */
}
I21CONCLR = I2CONCLR_SIC;
break;
case 0x50: /*
* Data byte has been received, regardless following ACK or
* NACK
**/
case 0x58:
//puts("Data received\n");
i2c_master_buffer[3 + rd_index] = I21DAT;
rd_index++;
if (rd_index < (i2c_read_length - 1)) {
i2c_master_state = DATA_ACK;
I21CONSET = I2CONSET_AA; /* assert ACK after data is received */
}
else {
I21CONCLR = I2CONCLR_AAC; /* NACK after data is received */
}
if (rd_index == i2c_read_length) {
rd_index = 0;
i2c_master_state = DATA_NACK;
}
I21CONCLR = I2CONCLR_SIC;
break;
case 0x20: /* regardless, it's a NACK */
case 0x48:
I21CONCLR = I2CONCLR_SIC;
i2c_master_state = DATA_NACK;
break;
case 0x38: /*
* Arbitration lost, in this example, we don't
* deal with multiple master situation
**/
//puts("Arbritration lost!\n");
default:
I21CONCLR = I2CONCLR_SIC;
break;
}
//IDISABLE;
//disableIRQ();
//puts("leave I2C handler function\n");
VICVectAddr = 0; /* Acknowledge Interrupt */
}
/**
* @brief The interrupt handler for the I2C2 interface.
* It deals only with the master mode.
*
*/
void i2c_interface2_master_handler(void) //__irq
{
//puts("entering I2C handler function\n");
uint8_t state_value;
/* this handler deals with master read and master write only */
state_value = I22STAT;
//IENABLE; /* handles nested interrupt */
//enableIRQ();
switch (state_value) {
case 0x08: /* A Start condition is issued. */
//puts("A Start condition is issued\n");
I22DAT = i2c_master_buffer[0];
//printf("I22DAT = %lu\n", I22DAT);
I22CONCLR = (I2CONCLR_SIC | I2CONCLR_STAC);
i2c_master_state = I2C_STARTED;
break;
case 0x10: /* A repeated started is issued */
//puts("A repeated Start is issued\n");
// if ( I2CCmd == L3DG420_WHO_AM_I)
// {
// I22DAT = I2CMasterBuffer[2];
// }
I22DAT = i2c_master_buffer[2];
I22CONCLR = (I2CONCLR_SIC | I2CONCLR_STAC);
i2c_master_state = I2C_RESTARTED;
break;
case 0x18: /* Regardless, it's a ACK */
//puts("got an Ack\n");
if (i2c_master_state == I2C_STARTED) {
I22DAT = i2c_master_buffer[1 + wr_index];
wr_index++;
i2c_master_state = DATA_ACK;
}
I22CONCLR = I2CONCLR_SIC;
break;
case 0x28: /* Data byte has been transmitted, regardless ACK or NACK */
case 0x30:
//puts("Data byte has been transmitted\n");
if (wr_index != i2c_write_length) {
// this should be the last one
I22DAT = i2c_master_buffer[1 + wr_index];
if (wr_index != i2c_write_length) {
i2c_master_state = DATA_ACK;
}
else {
i2c_master_state = DATA_NACK;
I22CONSET = I2CONSET_STO; /* Set Stop flag */
if (i2c_read_length != 0) {
I22CONSET = I2CONSET_STA; /* Set Repeated-start flag */
i2c_master_state = I2C_REPEATED_START;
}
}
wr_index++;
}
else {
if (i2c_read_length != 0) {
I22CONSET = I2CONSET_STA; /* Set Repeated-start flag */
i2c_master_state = I2C_REPEATED_START;
}
else {
i2c_master_state = DATA_NACK;
I22CONSET = I2CONSET_STO; /* Set Stop flag */
}
}
I22CONCLR = I2CONCLR_SIC;
break;
case 0x40: /* Master Receive, SLA_R has been sent */
//puts("Master Receive, SLA_R has been sent!\n");
if (i2c_read_length >= 2) {
I22CONSET = I2CONSET_AA; /* assert ACK after data is received */
}
I22CONCLR = I2CONCLR_SIC;
break;
case 0x50: /*
* Data byte has been received, regardless following ACK or
* NACK
**/
case 0x58:
//puts("Data received\n");
i2c_master_buffer[3 + rd_index] = I22DAT;
rd_index++;
if (rd_index < (i2c_read_length - 1)) {
i2c_master_state = DATA_ACK;
I22CONSET = I2CONSET_AA; /* assert ACK after data is received */
}
else {
I22CONCLR = I2CONCLR_AAC; /* NACK after data is received */
}
if (rd_index == i2c_read_length) {
rd_index = 0;
i2c_master_state = DATA_NACK;
}
I22CONCLR = I2CONCLR_SIC;
break;
case 0x20: /* regardless, it's a NACK */
case 0x48:
I22CONCLR = I2CONCLR_SIC;
i2c_master_state = DATA_NACK;
break;
case 0x38: /*
* Arbitration lost, in this example, we don't
* deal with multiple master situation
**/
//puts("Arbritration lost!\n");
default:
I22CONCLR = I2CONCLR_SIC;
break;
}
//IDISABLE;
//disableIRQ();
//puts("leave I2C handler function\n");
VICVectAddr = 0; /* Acknowledge Interrupt */
}
void i2c_set_slave_mode(uint8_t i2c_interface, uint8_t slave_addr)
{
switch (i2c_interface) {
case I2C0:
I20ADR = slave_addr;
break;
case I2C1_0:
case I2C1_1:
I21ADR = slave_addr;
break;
case I2C2:
I22ADR = slave_addr;
}
}
void i2c_enable_pull_up_resistor(uint8_t i2c_interface)
{
switch (i2c_interface) {
case I2C1_0: // P0.0 SDA1, P0.1 SCL1
puts("The on-chip pull-up resistor is enabled for the I2C1_0");
PINMODE0 &= ~(BIT0 | BIT1 | BIT2 | BIT3);
break;
case I2C1_1: // P0.19 SDA1, P0.20 SCL1
puts("The on-chip pull-up resistor is enabled for the I2C1_1");
PINMODE1 &= ~(BIT6 | BIT7 | BIT8 | BIT9);
break;
case I2C2: // P0.10 SDA2, P0.11 SCL2
puts("The on-chip pull-up resistor is enabled for the I2C2");
PINMODE0 &= ~(BIT20 | BIT21 | BIT22 | BIT23);
//PINMODE0 &= ~(BIT20 | BIT22);
}
}
void i2c_disable_pull_up_resistor(uint8_t i2c_interface)
{
switch (i2c_interface) {
case I2C1_0: // P0.0 SDA1, P0.1 SCL1
puts("The on-chip pull-up resistor is disbled for the I2C1_0");
PINMODE0 &= ~(BIT0 | BIT2);
PINMODE0 |= (BIT1 | BIT3);
break;
case I2C1_1: // P0.19 SDA1, P0.20 SCL1
puts("The on-chip pull-up resistor is disabled for the I2C1_1");
PINMODE1 &= ~(BIT6 | BIT8);
PINMODE1 |= (BIT7 | BIT9);
break;
case I2C2: // P0.10 SDA2, P0.11 SCL2
puts("The on-chip pull-up resistor is disbled for the I2C2");
PINMODE0 &= ~(BIT20 | BIT22);
PINMODE1 |= (BIT21 | BIT23);
}
}