1
0
mirror of https://github.com/RIOT-OS/RIOT.git synced 2025-01-18 09:52:45 +01:00
RIOT/cpu/stm32/periph/timer.c
2023-12-07 16:15:06 +01:00

367 lines
7.8 KiB
C

/*
* Copyright (C) 2014-2016 Freie Universität Berlin
*
* This file is subject to the terms and conditions of the GNU Lesser General
* Public License v2.1. See the file LICENSE in the top level directory for more
* details.
*/
/**
* @ingroup cpu_stm32
* @ingroup drivers_periph_timer
* @{
*
* @file
* @brief Low-level timer driver implementation
*
* @author Hauke Petersen <hauke.petersen@fu-berlin.de>
* @author Thomas Eichinger <thomas.eichinger@fu-berlin.de>
*
* @}
*/
#include "cpu.h"
#include "periph/timer.h"
/**
* @brief Interrupt context for each configured timer
*/
static timer_isr_ctx_t isr_ctx[TIMER_NUMOF];
/**
* @brief Get the timer device
*/
static inline TIM_TypeDef *dev(tim_t tim)
{
return timer_config[tim].dev;
}
/**
* @brief Get the number of channels of the timer device
*/
static unsigned channel_numof(tim_t tim)
{
if (timer_config[tim].channel_numof) {
return timer_config[tim].channel_numof;
}
/* backwards compatibility with older periph_conf.h files when all STM32
* had exactly 4 channels */
return TIMER_CHANNEL_NUMOF;
}
#ifdef MODULE_PERIPH_TIMER_PERIODIC
/**
* @brief Helper macro to get channel bit in timer/channel bitmap
*/
#define CHAN_BIT(tim, chan) (1 << chan) << (TIMER_CHANNEL_NUMOF * (tim & 1))
/**
* @brief Bitmap for compare channel disable after match
*/
static uint8_t _oneshot[(TIMER_NUMOF+1)/2];
/**
* @brief Clear interrupt enable after the interrupt has fired
*/
static inline void set_oneshot(tim_t tim, int chan)
{
_oneshot[tim >> 1] |= CHAN_BIT(tim, chan);
}
/**
* @brief Enable interrupt with every wrap-around of the timer
*/
static inline void clear_oneshot(tim_t tim, int chan)
{
_oneshot[tim >> 1] &= ~CHAN_BIT(tim, chan);
}
static inline bool is_oneshot(tim_t tim, int chan)
{
return _oneshot[tim >> 1] & CHAN_BIT(tim, chan);
}
#else /* !MODULE_PERIPH_TIMER_PERIODIC */
static inline void set_oneshot(tim_t tim, int chan)
{
(void)tim;
(void)chan;
}
static inline bool is_oneshot(tim_t tim, int chan)
{
(void)tim;
(void)chan;
return true;
}
#endif /* MODULE_PERIPH_TIMER_PERIODIC */
int timer_init(tim_t tim, uint32_t freq, timer_cb_t cb, void *arg)
{
/* check if device is valid */
if (tim >= TIMER_NUMOF) {
return -1;
}
/* remember the interrupt context */
isr_ctx[tim].cb = cb;
isr_ctx[tim].arg = arg;
/* enable the peripheral clock */
periph_clk_en(timer_config[tim].bus, timer_config[tim].rcc_mask);
/* configure the timer as upcounter in continuous mode */
dev(tim)->CR1 = 0;
dev(tim)->CR2 = 0;
dev(tim)->ARR = timer_config[tim].max;
/* set prescaler */
dev(tim)->PSC = ((periph_timer_clk(timer_config[tim].bus) / freq) - 1);
/* generate an update event to apply our configuration */
dev(tim)->EGR = TIM_EGR_UG;
/* enable the timer's interrupt */
NVIC_EnableIRQ(timer_config[tim].irqn);
/* reset the counter and start the timer */
timer_start(tim);
return 0;
}
int timer_set_absolute(tim_t tim, int channel, unsigned int value)
{
if ((unsigned)channel >= channel_numof(tim)) {
return -1;
}
unsigned irqstate = irq_disable();
set_oneshot(tim, channel);
#ifdef MODULE_PERIPH_TIMER_PERIODIC
if (dev(tim)->ARR == TIM_CHAN(tim, channel)) {
dev(tim)->ARR = timer_config[tim].max;
}
#endif
/* clear spurious IRQs */
dev(tim)->SR &= ~(TIM_SR_CC1IF << channel);
TIM_CHAN(tim, channel) = (value & timer_config[tim].max);
/* enable IRQ */
dev(tim)->DIER |= (TIM_DIER_CC1IE << channel);
irq_restore(irqstate);
return 0;
}
uword_t timer_query_freqs_numof(tim_t dev)
{
(void)dev;
/* Prescaler values from 0 to UINT16_MAX are supported */
return UINT16_MAX + 1;
}
uint32_t timer_query_freqs(tim_t dev, uword_t index)
{
if (index > UINT16_MAX) {
return 0;
}
return periph_timer_clk(timer_config[dev].bus) / (index + 1);
}
int timer_set(tim_t tim, int channel, unsigned int timeout)
{
unsigned value = (dev(tim)->CNT + timeout) & timer_config[tim].max;
if ((unsigned)channel >= channel_numof(tim)) {
return -1;
}
unsigned irqstate = irq_disable();
set_oneshot(tim, channel);
#ifdef MODULE_PERIPH_TIMER_PERIODIC
if (dev(tim)->ARR == TIM_CHAN(tim, channel)) {
dev(tim)->ARR = timer_config[tim].max;
}
#endif
/* clear spurious IRQs */
dev(tim)->SR &= ~(TIM_SR_CC1IF << channel);
TIM_CHAN(tim, channel) = value;
/* enable IRQ */
dev(tim)->DIER |= (TIM_DIER_CC1IE << channel);
/* calculate time till timeout */
value = (value - dev(tim)->CNT) & timer_config[tim].max;
if (value > timeout) {
/* time till timeout is larger than requested --> timer already expired
* ==> let's make sure we have an IRQ pending :) */
dev(tim)->EGR |= (TIM_EGR_CC1G << channel);
}
irq_restore(irqstate);
return 0;
}
#ifdef MODULE_PERIPH_TIMER_PERIODIC
int timer_set_periodic(tim_t tim, int channel, unsigned int value, uint8_t flags)
{
if ((unsigned)channel >= channel_numof(tim)) {
return -1;
}
unsigned irqstate = irq_disable();
clear_oneshot(tim, channel);
if (flags & TIM_FLAG_SET_STOPPED) {
timer_stop(tim);
}
if (flags & TIM_FLAG_RESET_ON_SET) {
/* setting COUNT gives us an interrupt on all channels */
dev(tim)->CNT = 0;
/* wait for the interrupt & clear it */
while(dev(tim)->SR == 0) {}
dev(tim)->SR = 0;
}
TIM_CHAN(tim, channel) = value;
/* clear spurious IRQs */
dev(tim)->SR &= ~(TIM_SR_CC1IF << channel);
/* enable IRQ */
dev(tim)->DIER |= (TIM_DIER_CC1IE << channel);
if (flags & TIM_FLAG_RESET_ON_MATCH) {
dev(tim)->ARR = value;
}
irq_restore(irqstate);
return 0;
}
#endif /* MODULE_PERIPH_TIMER_PERIODIC */
int timer_clear(tim_t tim, int channel)
{
if ((unsigned)channel >= channel_numof(tim)) {
return -1;
}
unsigned irqstate = irq_disable();
dev(tim)->DIER &= ~(TIM_DIER_CC1IE << channel);
irq_restore(irqstate);
#ifdef MODULE_PERIPH_TIMER_PERIODIC
if (dev(tim)->ARR == TIM_CHAN(tim, channel)) {
dev(tim)->ARR = timer_config[tim].max;
}
#endif
return 0;
}
unsigned int timer_read(tim_t tim)
{
return (unsigned int)dev(tim)->CNT;
}
void timer_start(tim_t tim)
{
unsigned irqstate = irq_disable();
dev(tim)->CR1 |= TIM_CR1_CEN;
irq_restore(irqstate);
}
void timer_stop(tim_t tim)
{
unsigned irqstate = irq_disable();
dev(tim)->CR1 &= ~(TIM_CR1_CEN);
irq_restore(irqstate);
}
static inline void irq_handler(tim_t tim)
{
uint32_t top = dev(tim)->ARR;
uint32_t status = dev(tim)->SR & dev(tim)->DIER;
/* clear interrupts which we are about to service */
/* Note, the flags in the SR register can be cleared by software, but
* setting them has no effect on the register. Only the hardware can set
* them. */
dev(tim)->SR = ~status;
for (unsigned int i = 0; status; i++) {
uint32_t msk = TIM_SR_CC1IF << i;
/* check if interrupt flag is set */
if ((status & msk) == 0) {
continue;
}
status &= ~msk;
/* interrupt flag gets set for all channels > ARR */
if (TIM_CHAN(tim, i) > top) {
continue;
}
/* disable Interrupt */
if (is_oneshot(tim, i)) {
dev(tim)->DIER &= ~msk;
}
isr_ctx[tim].cb(isr_ctx[tim].arg, i);
}
cortexm_isr_end();
}
#ifdef TIMER_0_ISR
void TIMER_0_ISR(void)
{
irq_handler(0);
}
#endif
#ifdef TIMER_1_ISR
void TIMER_1_ISR(void)
{
irq_handler(1);
}
#endif
#ifdef TIMER_2_ISR
void TIMER_2_ISR(void)
{
irq_handler(2);
}
#endif
#ifdef TIMER_3_ISR
void TIMER_3_ISR(void)
{
irq_handler(3);
}
#endif
#ifdef TIMER_4_ISR
void TIMER_4_ISR(void)
{
irq_handler(4);
}
#endif