1
0
mirror of https://github.com/RIOT-OS/RIOT.git synced 2024-12-29 04:50:03 +01:00
RIOT/sys/crypto/modes/ocb.c
2020-10-05 12:32:51 +02:00

356 lines
12 KiB
C

/*
* Copyright (C) 2018 Mathias Tausig
*
* This file is subject to the terms and conditions of the GNU Lesser
* General Public License v2.1. See the file LICENSE in the top level
* directory for more details.
*/
/**
* @ingroup sys_crypto
* @{
*
* @file
* @brief Offset Codebook (OCB3) AEAD mode as specified in RFC 7253
*
* @author Mathias Tausig <mathias@tausig.at>
*
*/
#include "crypto/modes/ocb.h"
#include <stdint.h>
#include <string.h>
#define OCB_MODE_ENCRYPT 1
#define OCB_MODE_DECRYPT 2
struct ocb_state {
const cipher_t *cipher;
uint8_t l_star[16];
uint8_t l_zero[16];
uint8_t l_dollar[16];
uint8_t checksum[16];
uint8_t offset[16];
};
typedef struct ocb_state ocb_state_t;
static void double_block(const uint8_t source[16], uint8_t dest[16])
{
uint8_t msb = source[0] >> 7;
for (uint8_t i = 0; i < 15; ++i) {
dest[i] = source[i] << 1 | source[i + 1] >> 7;
}
dest[15] = (source[15] << 1) ^ (0x87 * msb);
}
static size_t ntz(size_t n)
{
/* ntz must only be run on positive values */
if (n == 0) {
return SIZE_MAX;
}
size_t ret = 0;
while (n % 2 == 0) {
++ret;
n = n >> 1;
}
return ret;
}
static void calculate_l_i(const uint8_t l_zero[16], size_t i, uint8_t output[16])
{
memcpy(output, l_zero, 16);
while ((i--) > 0) {
double_block(output, output);
}
}
static void xor_block(const uint8_t block1[16], const uint8_t block2[16],
uint8_t output[16])
{
for (uint8_t i = 0; i < 16; ++i) {
output[i] = block1[i] ^ block2[i];
}
}
static void processBlock(ocb_state_t *state, size_t blockNumber,
const uint8_t input[16], uint8_t output[16],
uint8_t mode)
{
/* Offset_i = Offset_{i-1} xor L_{ntz(i)} */
uint8_t l_i[16];
calculate_l_i(state->l_zero, ntz(blockNumber + 1), l_i);
xor_block(state->offset, l_i, state->offset);
/* Sum_i = Sum_{i-1} xor ENCIPHER(K, A_i xor Offset_i) */
uint8_t cipher_output[16], cipher_input[16];
xor_block(input, state->offset, cipher_input);
if (mode == OCB_MODE_ENCRYPT) {
state->cipher->interface->encrypt(&(state->cipher->context),
cipher_input, cipher_output);
}
else if (mode == OCB_MODE_DECRYPT) {
state->cipher->interface->decrypt(&(state->cipher->context),
cipher_input, cipher_output);
}
xor_block(state->offset, cipher_output, output);
/* Checksum_i = Checksum_{i-1} xor P_i */
if (mode == OCB_MODE_ENCRYPT) {
xor_block(state->checksum, input, state->checksum);
}
else if (mode == OCB_MODE_DECRYPT) {
xor_block(state->checksum, output, state->checksum);
}
}
static void hash(ocb_state_t *state, const uint8_t *data, size_t data_len,
uint8_t output[16])
{
/* Calculate the number of full blocks in data */
size_t m = (data_len - (data_len % 16)) / 16;
size_t remaining_data_len = data_len - m * 16;
/* Sum_0 = zeros(128) */
memset(output, 0, 16);
/* Offset_0 = zeros(128) */
uint8_t offset[16];
memset(offset, 0, 16);
for (size_t i = 0; i < m; ++i) {
/* Offset_i = Offset_{i-1} xor L_{ntz(i)} */
uint8_t l_i[16];
calculate_l_i(state->l_zero, ntz(i + 1), l_i);
xor_block(offset, l_i, offset);
/* Sum_i = Sum_{i-1} xor ENCIPHER(K, A_i xor Offset_i) */
uint8_t enciphered_block[16], cipher_input[16];
xor_block(data, offset, cipher_input);
state->cipher->interface->encrypt(&(state->cipher->context),
cipher_input, enciphered_block);
xor_block(output, enciphered_block, output);
data += 16;
}
if (remaining_data_len > 0) {
/* Offset_* = Offset_m xor L_* */
xor_block(offset, state->l_star, offset);
/* CipherInput = (A_* || 1 || zeros(127-bitlen(A_*))) xor Offset_* */
uint8_t cipher_input[16];
memset(cipher_input, 0, 16);
memcpy(cipher_input, data, remaining_data_len);
cipher_input[remaining_data_len] = 0x80;
xor_block(cipher_input, offset, cipher_input);
/* Sum = Sum_m xor ENCIPHER(K, CipherInput) */
uint8_t enciphered_block[16];
state->cipher->interface->encrypt(&(state->cipher->context),
cipher_input, enciphered_block);
xor_block(output, enciphered_block, output);
}
}
static void init_ocb(const cipher_t *cipher, uint8_t tag_len,
const uint8_t *nonce, size_t nonce_len,
ocb_state_t *state)
{
state->cipher = cipher;
/* Key-dependent variables
L_* = ENCIPHER(K, zeros(128))
L_$ = double(L_*)
L_0 = double(L_$)
L_i = double(L_{i-1}) for every integer i > 0
*/
uint8_t zero_block[16];
memset(zero_block, 0, 16);
cipher->interface->encrypt(&(cipher->context), zero_block, state->l_star);
double_block(state->l_star, state->l_dollar);
double_block(state->l_dollar, state->l_zero);
/* Nonce-dependent and per-encryption variables */
/* Nonce = num2str(TAGLEN mod 128,7) || zeros(120-bitlen(N)) || 1 || N */
uint8_t nonce_padded[16];
memset(nonce_padded, 0, 16);
nonce_padded[0] = (tag_len * 8) << 1;
nonce_padded[15 - nonce_len] = 0x01;
memcpy(nonce_padded + 16 - nonce_len, nonce, nonce_len);
/* bottom = str2num(Nonce[123..128])*/
uint8_t bottom = (nonce_padded[15] << 2) >> 2;
/* Ktop = ENCIPHER(K, Nonce[1..122] || zeros(6)) */
nonce_padded[15] = nonce_padded[15] & 0xC0;
uint8_t ktop[16];
cipher->interface->encrypt(&(cipher->context), nonce_padded, ktop);
/* Stretch = Ktop || (Ktop[1..64] xor Ktop[9..72]) */
uint8_t stretch[24];
memcpy(stretch, ktop, 16);
for (uint8_t i = 0; i < 8; ++i) {
stretch[16 + i] = ktop[i] ^ ktop[i + 1];
}
/* Offset_0 = Stretch[1+bottom..128+bottom] */
uint8_t offset_start_byte = bottom / 8;
uint8_t offset_start_bit = bottom - offset_start_byte * 8;
for (uint8_t i = 0; i < 16; ++i) {
state->offset[i] =
(stretch[offset_start_byte + i] << offset_start_bit) |
(stretch[offset_start_byte + i + 1] >> (8 - offset_start_bit));
}
/* Checksum_0 = zeros(128) */
memset(state->checksum, 0, 16);
}
static int32_t run_ocb(const cipher_t *cipher,
const uint8_t *auth_data, uint32_t auth_data_len,
uint8_t tag[16], uint8_t tag_len,
const uint8_t *nonce, size_t nonce_len,
const uint8_t *input, size_t input_len,
uint8_t *output, uint8_t mode)
{
/* OCB mode only works for ciphers of block length 16 */
if (cipher->interface->block_size != 16) {
return OCB_ERR_INVALID_BLOCK_LENGTH;
}
/* The tag can be at most 128 bit long */
if (tag_len > 16 || tag_len == 0) {
return OCB_ERR_INVALID_TAG_LENGTH;
}
/* The nonce can be at most 120 bit long */
if (nonce_len >= 16 || nonce_len == 0) {
return OCB_ERR_INVALID_NONCE_LENGTH;
}
ocb_state_t state;
init_ocb(cipher, tag_len, nonce, nonce_len, &state);
/* Calculate the number of full blocks in data */
size_t m = (input_len - (input_len % 16)) / 16;
size_t remaining_input_len = input_len - m * 16;
/* Process any whole blocks */
size_t output_pos = 0;
for (size_t i = 0; i < m; ++i) {
processBlock(&state, i, input, output + output_pos, mode);
output_pos += 16;
input += 16;
}
/* Process any final partial block and compute raw tag */
if (remaining_input_len > 0) {
/* Offset_* = Offset_m xor L_* */
xor_block(state.offset, state.l_star, state.offset);
/* Pad = ENCIPHER(K, Offset_*) */
uint8_t pad[16];
cipher->interface->encrypt(&(cipher->context), state.offset, pad);
/* Encrypt: C_* = P_* xor Pad[1..bitlen(P_*)] */
/* Decrypt: P_* = C_* xor Pad[1..bitlen(C_*)] */
uint8_t final_block[remaining_input_len];
memcpy(final_block, pad, remaining_input_len);
for (uint8_t i = 0; i < remaining_input_len; ++i) {
final_block[i] = input[i] ^ pad[i];
}
memcpy(output + output_pos, final_block, remaining_input_len);
/* Checksum_* = Checksum_m xor (P_* || 1 || zeros(127-bitlen(P_*))) */
uint8_t padded_block[16];
memset(padded_block, 0, 16);
if (mode == OCB_MODE_ENCRYPT) {
memcpy(padded_block, input, remaining_input_len);
}
else if (mode == OCB_MODE_DECRYPT) {
memcpy(padded_block, output + output_pos, remaining_input_len);
}
padded_block[remaining_input_len] = 0x80;
xor_block(state.checksum, padded_block, state.checksum);
output_pos += remaining_input_len;
}
/* else: C_* = <empty string> */
/* Tag = ENCIPHER(K, Checksum_* xor Offset_* xor L_$) xor HASH(K,A) */
/* Tag = ENCIPHER(K, Checksum_m xor Offset_m xor L_$) xor HASH(K,A) */
uint8_t hash_value[16];
hash(&state, auth_data, auth_data_len, hash_value);
uint8_t cipher_data[16];
xor_block(state.checksum, state.offset, cipher_data);
xor_block(cipher_data, state.l_dollar, cipher_data);
cipher->interface->encrypt(&(cipher->context), cipher_data, tag);
xor_block(tag, hash_value, tag);
return output_pos;
}
int32_t cipher_encrypt_ocb(const cipher_t *cipher,
const uint8_t *auth_data, size_t auth_data_len,
uint8_t tag_len,
const uint8_t *nonce, size_t nonce_len,
const uint8_t *input, size_t input_len,
uint8_t *output)
{
uint8_t tag[16];
if (input_len > (uint32_t)(INT32_MAX - tag_len)) {
// We would not be able to return the proper output length for data this long
return OCB_ERR_INVALID_DATA_LENGTH;
}
int cipher_text_length = run_ocb(cipher, auth_data, auth_data_len,
tag, tag_len, nonce, nonce_len,
input, input_len, output,
OCB_MODE_ENCRYPT);
if (cipher_text_length < 0) {
// An error occurred. Return the error code
return cipher_text_length;
}
/* C = C_1 || C_2 || ... || C_m || C_* || Tag[1..TAGLEN] */
memcpy(output + cipher_text_length, tag, tag_len);
return (cipher_text_length + tag_len);
}
int32_t cipher_decrypt_ocb(const cipher_t *cipher,
const uint8_t *auth_data, size_t auth_data_len,
uint8_t tag_len,
const uint8_t *nonce, size_t nonce_len,
const uint8_t *input, size_t input_len,
uint8_t *output)
{
if (input_len > (uint32_t)(INT32_MAX + tag_len)) {
// We would not be able to return the proper output length for data this long
return OCB_ERR_INVALID_DATA_LENGTH;
}
uint8_t tag[16];
int plain_text_length = run_ocb(cipher, auth_data, auth_data_len,
tag, tag_len, nonce, nonce_len,
input, input_len - tag_len, output,
OCB_MODE_DECRYPT);
if (plain_text_length < 0) {
// An error occurred. Return the error code
return plain_text_length;
}
/* Check the tag */
if (memcmp(tag, input + input_len - tag_len, tag_len) == 0) {
/* Tag is valid */
/* P = P_1 || P_2 || ... || P_m || P_* */
return plain_text_length;
}
else {
/* Tag is not valid */
/* Destroy the decrypted data to prevent misuse */
memset(output, 0, input_len - tag_len);
return OCB_ERR_INVALID_TAG;
}
}