1
0
mirror of https://github.com/RIOT-OS/RIOT.git synced 2024-12-29 04:50:03 +01:00
RIOT/drivers/cc110x/cc1100_phy.c

864 lines
28 KiB
C

/******************************************************************************
Copyright 2008, Freie Universitaet Berlin (FUB). All rights reserved.
These sources were developed at the Freie Universitaet Berlin, Computer Systems
and Telematics group (http://cst.mi.fu-berlin.de).
-------------------------------------------------------------------------------
This file is part of FeuerWare.
This program is free software: you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free Software
Foundation, either version 3 of the License, or (at your option) any later
version.
FeuerWare is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License along with
this program. If not, see http://www.gnu.org/licenses/ .
--------------------------------------------------------------------------------
For further information and questions please use the web site
http://scatterweb.mi.fu-berlin.de
and the mailinglist (subscription via web site)
scatterweb@lists.spline.inf.fu-berlin.de
*******************************************************************************/
/**
* @ingroup dev_cc110x
* @{
*/
/**
* @file
* @internal
* @brief TI Chipcon CC110x physical radio driver
*
* @author Freie Universität Berlin, Computer Systems & Telematics, FeuerWhere project
* @author Thomas Hillebrandt <hillebra@inf.fu-berlin.de>
* @author Heiko Will <hwill@inf.fu-berlin.de>
* @version $Revision: 2130 $
*
* @note $Id: cc1100_phy.c 2130 2010-05-12 13:19:07Z hillebra $
*/
#include <stdio.h>
#include <string.h>
#include "hwtimer.h"
#include "swtimer.h"
#include "cc1100.h"
#include "cc1100_spi.h"
#include "cc1100_phy.h"
#include "cc1100-defaultSettings.h"
#include "protocol-multiplex.h"
#include "kernel.h"
#include "thread.h"
#include "mutex.h"
#include "msg.h"
#include "debug.h"
#define MSG_POLL 12346
#define FLAGS_IDENTIFICATION (0x01) ///< Bit mask for reading the identification out of the flags field
#define R_FLAGS_PROTOCOL(x) ((x & 0x0E)>>1) ///< Macro for reading the protocol out of the flags field
#define W_FLAGS_PROTOCOL(x) ((x<<1) & 0x0E) ///< Macro for writing the protocol in the flags field
/*---------------------------------------------------------------------------*/
// RX/TX buffer data structures
/*---------------------------------------------------------------------------*/
typedef struct rx_buffer_t
{
cc1100_packet_layer0_t packet;
packet_info_t info;
} rx_buffer_t;
#define RX_BUFF_SIZE (10) ///< Size of RX queue
static volatile uint8_t rx_buffer_head; ///< RX queue head
static volatile uint8_t rx_buffer_tail; ///< RX queue tail
static volatile uint8_t rx_buffer_size; ///< RX queue size
static rx_buffer_t rx_buffer[RX_BUFF_SIZE]; ///< RX buffer
static cc1100_packet_layer0_t tx_buffer; ///< TX buffer (for one packet)
/*---------------------------------------------------------------------------*/
// Process/Event management data structures
/*---------------------------------------------------------------------------*/
#define MAX_PACKET_HANDLERS (5)
static packet_monitor_t packet_monitor;
static handler_entry_t handlers[MAX_PACKET_HANDLERS];
static const pm_table_t handler_table;
static const char *cc1100_event_handler_name = "cc1100_event_handler";
static mutex_t cc1100_mutex;
volatile int cc1100_mutex_pid;
static uint16_t cc1100_event_handler_pid;
static void cc1100_event_handler_function(void);
static swtimer_t cc1100_watch_dog;
static uint64_t cc1100_watch_dog_period = 0;
/*---------------------------------------------------------------------------*/
// Sequence number buffer management data structures
/*---------------------------------------------------------------------------*/
/**
* @name Sequence Buffer
* @{
*/
#define MAX_SEQ_BUFFER_SIZE (20) ///< Maximum size of the sequence number buffer
typedef struct
{
uint64_t m_ticks; ///< 64-bit timestamp
uint8_t source; ///< Source address
uint8_t identification; ///< Identification (1-bit)
} seq_buffer_entry;
/// Sequence number buffer for this layer
static seq_buffer_entry seq_buffer[MAX_SEQ_BUFFER_SIZE];
/// Next position to enter a new value into ::seqBuffer
static uint8_t seq_buffer_pos = 0;
/**
* @brief Last sequence number this node has seen
*
* @note (phySrc + flags.identification) - for speedup in ISR.
*/
static volatile uint16_t last_seq_num = 0;
/** @} */
/*---------------------------------------------------------------------------*/
// WOR configuration data structures
/*---------------------------------------------------------------------------*/
#define EVENT0_MAX (60493) ///< Maximum RX polling interval in milliseconds
#define WOR_RES_SWITCH (1891) ///< Switching point value in milliseconds between
///< WOR_RES = 0 and WOR_RES = 1
#define DUTY_CYCLE_SIZE (7) ///< Length of duty cycle array
cc1100_wor_config_t cc1100_wor_config; ///< CC1100 WOR configuration
uint16_t cc1100_burst_count; ///< Burst count, number of packets in a burst transfer
uint8_t cc1100_retransmission_count_uc; ///< Number of retransmissions for unicast
uint8_t cc1100_retransmission_count_bc; ///< Number of retransmissions for broadcast
const static double duty_cycle[2][DUTY_CYCLE_SIZE] = ///< Duty cycle values from AN047
{
{12.5, 6.25, 3.125, 1.563, 0.781, 0.391, 0.195},
{1.95, 0.9765, 0.4883, 0.2441, 0.1221, 0.061035, 0.030518}
};
/*---------------------------------------------------------------------------*/
// Data structures for statistic
/*---------------------------------------------------------------------------*/
cc1100_statistic_t cc1100_statistic;
/*---------------------------------------------------------------------------*/
// Initialization of physical layer
/*---------------------------------------------------------------------------*/
void cc1100_phy_init()
{
int i;
rx_buffer_head = 0;
rx_buffer_tail = 0;
rx_buffer_size = 0;
// Initialize RX-Buffer (clear content)
for (i = 0; i < RX_BUFF_SIZE; i++)
{
rx_buffer->packet.length = 0;
}
// Initialize handler table & packet monitor
packet_monitor = NULL;
pm_init_table((pm_table_t*)&handler_table, MAX_PACKET_HANDLERS, handlers);
// Clear sequence number buffer
memset(seq_buffer, 0, sizeof(seq_buffer_entry) * MAX_SEQ_BUFFER_SIZE);
// Initialize mutex
cc1100_mutex_pid = -1;
mutex_init(&cc1100_mutex);
// Allocate event numbers and start cc1100 event process
cc1100_event_handler_pid = thread_create(2500, PRIORITY_CC1100, CREATE_STACKTEST,
cc1100_event_handler_function, cc1100_event_handler_name);
// Active watchdog for the first time
if (radio_mode == CC1100_MODE_CONSTANT_RX) {
cc1100_watch_dog_period = CC1100_WATCHDOG_PERIOD;
if (cc1100_watch_dog_period != 0) {
swtimer_set_msg(&cc1100_watch_dog, 5000000L, cc1100_event_handler_pid, NULL);
}
}
}
/*---------------------------------------------------------------------------*/
// CC1100 mutual exclusion
/*---------------------------------------------------------------------------*/
void cc1100_phy_mutex_lock(void)
{
if (fk_thread->pid != cc1100_mutex_pid) {
mutex_lock(&cc1100_mutex);
cc1100_mutex_pid = fk_thread->pid;
}
}
void cc1100_phy_mutex_unlock(void)
{
cc1100_mutex_pid = -1;
mutex_unlock(&cc1100_mutex, 0);
}
/*---------------------------------------------------------------------------*/
// Statistical functions
/*---------------------------------------------------------------------------*/
void cc1100_reset_statistic(void)
{
cc1100_statistic.packets_in_up = 0;
cc1100_statistic.acks_send = 0;
cc1100_statistic.packets_out_acked = 0;
cc1100_statistic.packets_in = 0;
cc1100_statistic.packets_out = 0;
cc1100_statistic.packets_out_broadcast = 0;
cc1100_statistic.raw_packets_out_acked = 0;
cc1100_statistic.raw_packets_out = 0;
cc1100_statistic.packets_in_dups = 0;
cc1100_statistic.packets_in_crc_fail = 0;
cc1100_statistic.packets_in_while_tx = 0;
cc1100_statistic.rx_buffer_max = 0;
cc1100_statistic.watch_dog_resets = 0;
}
void cc1100_print_statistic(void)
{
printf("\nStatistic on CC1100 interface\n\n");
printf("Total packets send on layer 0.5 (broadcast): %lu\n", cc1100_statistic.packets_out_broadcast);
printf("Total packets send on layer 0.5 (unicast): %lu\n", cc1100_statistic.packets_out);
printf("Total packets Acked on layer 0.5: %lu (%.2f%%)\n", cc1100_statistic.packets_out_acked, cc1100_statistic.packets_out_acked * (100.0f / (float)cc1100_statistic.packets_out));
printf("Total packets send on layer 0: %lu\n", cc1100_statistic.raw_packets_out);
printf("Total packets send on layer 0 w. Ack on Layer 0.5: %lu (Avg. Ack after: %lu packets)\n", cc1100_statistic.raw_packets_out_acked, cc1100_statistic.raw_packets_out_acked / cc1100_statistic.packets_out_acked);
printf("Burst count on this node: %i (%.2f%%)\n", cc1100_burst_count, (100/(float)cc1100_burst_count) * (cc1100_statistic.raw_packets_out_acked / (float) cc1100_statistic.packets_out_acked));
printf("Total packets In on layer 0: %lu\n", cc1100_statistic.packets_in);
printf("Duped packets In on layer 0: %lu\n", cc1100_statistic.packets_in_dups);
printf("Corrupted packets In on layer 0: %lu\n", cc1100_statistic.packets_in_crc_fail);
printf("Packets In on layer 0 while in TX: %lu\n", cc1100_statistic.packets_in_while_tx);
printf("Total packets In and up to layer 1: %lu (%.2f%%)\n", cc1100_statistic.packets_in_up, cc1100_statistic.packets_in_up * (100.0f / (float)cc1100_statistic.packets_in));
printf("Total Acks send on layer 0.5: %lu\n", cc1100_statistic.acks_send);
printf("RX Buffer max: %lu (now: %u)\n", cc1100_statistic.rx_buffer_max, rx_buffer_size);
printf("State machine resets by cc1100 watchdog: %lu\n", cc1100_statistic.watch_dog_resets);
}
void cc1100_print_config(void)
{
char buf[8];
printf("Current radio mode: %s\r\n", cc1100_mode_to_text(radio_mode));
printf("Current radio state: %s\r\n", cc1100_state_to_text(radio_state));
printf("Current MARC state: %s\r\n", cc1100_get_marc_state());
printf("Current channel number: %u\r\n", cc1100_get_channel());
printf("Burst count: %u packet(s)\r\n", cc1100_burst_count);
printf("Retransmissions (unicast): %u - if no ACK\r\n", cc1100_retransmission_count_uc);
printf("Retransmissions (broadcast): %u - always\r\n", cc1100_retransmission_count_bc);
printf("Output power setting: %s\r\n", cc1100_get_output_power(buf));
if (radio_mode == CC1100_MODE_WOR)
{
printf("RX polling interval: %u ms\r\n", cc1100_wor_config.rx_interval);
printf("WOR receive time: 0x%.2X (%f ms)\r\n", cc1100_wor_config.rx_time_reg,
cc1100_wor_config.rx_time_ms);
printf("CC1100 WOREVT0 register: 0x%.2X\r\n", cc1100_wor_config.wor_evt_0);
printf("CC1100 WOREVT1 register: 0x%.2X\r\n", cc1100_wor_config.wor_evt_1);
printf("CC1100 WOR_CTRL register: 0x%.2X\r\n", cc1100_wor_config.wor_ctrl);
printf("CC1100 MAN_WOR flag: %u\r\n", rflags.MAN_WOR);
}
}
/*---------------------------------------------------------------------------*/
// Change of RX polling interval (T_EVENT0)
/*---------------------------------------------------------------------------*/
inline uint16_t iround(double d)
{
return (uint16_t) d<0?d-.5:d+.5;
}
int cc1100_phy_calc_wor_settings(uint16_t millis)
{
// Get packet interval as milliseconds
double t_packet_interval = (double) ((T_PACKET_INTERVAL) / 1000.0);
// Calculate minimal T_EVENT0:
//
// (1) t_rx_time > t_packet_interval
// (2) t_rx_time = T_EVENT0 / 2 ^ (RX_TIME + 3 + WOR_RES)
// ------------------------------------------------------
// with RX_TIME = 0 && WOR_RES = 0 => event0_min > t_packet_interval * 8
//
// t_packet_interval = 3.8 ms (@400kbit/s)
//
// => event0_min = Math.ceil(3.8 * 8) + 10
uint16_t event0_min = (uint16_t)(t_packet_interval * 8) + 1 + 10;
// Check if given value is in allowed range
if (millis < event0_min || millis > EVENT0_MAX)
{
return -1;
}
// Time resolution for EVENT0 and other WOR parameters,
// possible values are 0 and 1 if WOR is used
uint8_t wor_res = millis < WOR_RES_SWITCH ? 0 : 1;
// Calculate new value for EVENT0
double tmp = (millis * 26) / (double) 750;
if (wor_res == 1) tmp /= 32;
tmp *= 1000;
uint16_t event0 = (uint16_t) iround(tmp);
// Calculate all possible RX timeouts
int i;
double rx_timeouts[DUTY_CYCLE_SIZE];
for (i = 0; i < DUTY_CYCLE_SIZE; i++)
{
rx_timeouts[i] = (millis * duty_cycle[wor_res][i]) / 100;
}
// Calculate index for optimal rx_timeout (MCSM2.RX_TIME) (if possible)
int idx = -1;
for (i = DUTY_CYCLE_SIZE - 1; i >= 0; i--)
{
if (rx_timeouts[i] > t_packet_interval)
{
idx = i;
break;
}
}
// If no index found, exit here (configuration with given value is not possible)
if (idx == -1) return -1;
// Calculate burst count (secure burst calculation with 8 extra packets)
int burst_count = (int) iround(millis / t_packet_interval) + 8;
// All calculations successful, now its safe to store
// final configuration values in global WOR configuration
cc1100_wor_config.rx_interval = millis;
cc1100_wor_config.wor_ctrl = (wor_res == 0) ? 0x78 : 0x79;
cc1100_wor_config.wor_evt_0 = (uint8_t) event0;
cc1100_wor_config.wor_evt_1 = (uint8_t) (event0 >> 8);
cc1100_wor_config.rx_time_reg = idx;
cc1100_wor_config.rx_time_ms = rx_timeouts[idx];
// If successful, return number of packets in a burst transfer
return burst_count;
}
/*---------------------------------------------------------------------------*/
// Sequence number buffer management
/*---------------------------------------------------------------------------*/
static bool contains_seq_entry(uint8_t src, uint8_t id)
{
int i;
uint32_t cmp;
uint64_t now = swtimer_now();
for (i = 0; i < MAX_SEQ_BUFFER_SIZE; i++)
{
if ((seq_buffer[i].source == src) && (seq_buffer[i].identification == id))
{
// Check if time stamp is OK
cmp = (radio_mode == CC1100_MODE_WOR) ? cc1100_wor_config.rx_interval : 16000; // constant RX ~16ms
if ((now - seq_buffer[i].m_ticks) <= cmp)
{
return true;
}
else
{
seq_buffer[i].source = 0; // Reset
}
}
}
return false;
}
static void add_seq_entry(uint8_t src, uint8_t id)
{
// Remove all entries with given source to avoid short time overflow
// of one bit counter (of the source node). So a valid packet would get
// lost (especially important in constant RX mode).
int i;
for (i = 0; i < MAX_SEQ_BUFFER_SIZE; i++)
{
if (seq_buffer[i].source == src)
{
seq_buffer[i].source = 0; // Reset
}
}
// Add new entry
seq_buffer[seq_buffer_pos].source = src;
seq_buffer[seq_buffer_pos].identification = id;
seq_buffer[seq_buffer_pos].m_ticks = swtimer_now();
// Store 16 bit sequence number of layer 0 for speedup
last_seq_num = src;
last_seq_num <<= 8;
last_seq_num += id;
seq_buffer_pos++;
if (seq_buffer_pos == MAX_SEQ_BUFFER_SIZE) seq_buffer_pos = 0;
}
/*---------------------------------------------------------------------------*/
// CC1100 physical layer send functions
/*---------------------------------------------------------------------------*/
static void send_link_level_ack(uint8_t dest)
{
uint8_t oldState = radio_state; // Save old state
cc1100_packet_layer0_t ack; // Local packet, don't overwrite
radio_state = RADIO_SEND_ACK; // Set state to "Sending ACK"
cc1100_spi_write_reg(CC1100_MCSM0, 0x08); // Turn off FS-Autocal
cc1100_spi_write_reg(CC1100_MCSM1, 0x00); // TX_OFFMODE = IDLE
ack.length = 3; // possible packet in txBuffer!
ack.address = dest;
ack.phy_src = rflags.RSSI;
ack.flags = (LAYER_1_PROTOCOL_LL_ACK << 1);
cc1100_send_raw((uint8_t*)&ack, // IDLE -> TX (88.4 us)
ack.length+1);
cc1100_spi_write_reg(CC1100_MCSM0, 0x18); // Turn on FS-Autocal
cc1100_spi_write_reg(CC1100_MCSM1, 0x03); // TX_OFFMODE = RX
radio_state = oldState; // Restore state
cc1100_statistic.acks_send++;
}
static bool send_burst(cc1100_packet_layer0_t *packet, uint8_t retries, uint8_t rtc)
{
int i;
radio_state = RADIO_SEND_BURST;
rflags.LL_ACK = false;
for (i = 1; i <= cc1100_burst_count; i++)
{
/*
* Number of bytes to send is:
* length of phy payload (packet->length)
* + size of length field (1 byte)
*/
extern unsigned long hwtimer_now(void);
timer_tick_t t = hwtimer_now() + RTIMER_TICKS(T_PACKET_INTERVAL);
cc1100_send_raw((uint8_t*)packet, packet->length + 1); // RX -> TX (9.6 us)
cc1100_statistic.raw_packets_out++;
// Delay until predefined "send" interval has passed
timer_tick_t now = hwtimer_now();
if (t > now)
{
hwtimer_wait(t - now);
}
/**
* After sending the packet the CC1100 goes automatically
* into RX mode (21.5 us) (listening for an ACK).
* Do not interrupt burst if send to broadcast address (a node may
* have the broadcast address at startup and would stop the burst
* by sending an ACK).
*/
if (rflags.LL_ACK && packet->address != CC1100_BROADCAST_ADDRESS)
{
cc1100_statistic.raw_packets_out_acked += i;
break;
}
}
// No link level ACK -> do retry if retry counter greater zero
// Note: Event broadcast packets can be sent repeatedly if in
// constant RX mode. In WOR mode it is not necessary, so
// set retry count to zero.
if (!rflags.LL_ACK && retries > 0)
{
return send_burst(packet, retries - 1, rtc + 1);
}
// Store number of transmission retries
rflags.RTC = rtc;
rflags.RPS = rtc * cc1100_burst_count + i;
if (i > cc1100_burst_count) rflags.RPS--;
rflags.TX = false;
// Go to mode after TX (CONST_RX -> RX, WOR -> WOR)
cc1100_go_after_tx();
// Burst from any other node is definitely over
last_seq_num = 0;
if (packet->address != CC1100_BROADCAST_ADDRESS && !rflags.LL_ACK)
{
return false;
}
return true;
}
int cc1100_send(radio_address_t addr, protocol_t protocol, int priority, char *payload, int payload_len)
{
bool result;
int return_code;
uint8_t address;
uint8_t retries;
// Lock mutex, nobody else should send now
cc1100_phy_mutex_lock();
// TX state machine lock -> no timers (WOR), no packets (only ACKs)
rflags.TX = true;
// Set chip to idle state
cc1100_set_idle();
// CC1100 radio layer only supports 8-bit addresses
address = addr;
// Loopback not supported
if (address == cc1100_get_address())
{
return_code = RADIO_ADDR_OUT_OF_RANGE;
goto mode_before_final;
}
// Check address
if (address > MAX_UID)
{
return_code = RADIO_ADDR_OUT_OF_RANGE;
goto mode_before_final;
}
// Packet too long
if (payload_len > MAX_DATA_LENGTH)
{
return_code = RADIO_PAYLOAD_TOO_LONG;
goto mode_before_final;
}
if (radio_state == RADIO_PWD)
{
return_code = RADIO_WRONG_MODE;
goto mode_before_final;
}
// Set number of transmission retries
retries = (address == CC1100_BROADCAST_ADDRESS) ?
cc1100_retransmission_count_bc : cc1100_retransmission_count_uc;
memset(tx_buffer.data, 0, MAX_DATA_LENGTH); // Clean data
tx_buffer.length = 3 + MAX_DATA_LENGTH; // 3 bytes (A&PS&F) + data length
tx_buffer.address = address; // Copy destination address
tx_buffer.flags = 0x00; // Set clean state
tx_buffer.flags = W_FLAGS_PROTOCOL(protocol); // Copy protocol identifier
tx_buffer.phy_src = (uint8_t) cc1100_get_address(); // Copy sender address
// Set identification number of packet
tx_buffer.flags |= rflags.SEQ; // Set flags.identification (bit 0)
rflags.SEQ = !rflags.SEQ; // Toggle value of layer 0 sequence number bit
memcpy(tx_buffer.data, payload, payload_len); // Copy data
// Send the packet
cc1100_spi_write_reg(CC1100_MCSM0, 0x08); // Turn off FS-Autocal
result = send_burst(&tx_buffer, retries, 0); // Send raw burst
return_code = result ? payload_len : RADIO_OP_FAILED;
// Collect statistics
if (address != CC1100_BROADCAST_ADDRESS)
{
cc1100_statistic.packets_out++;
if (result) cc1100_statistic.packets_out_acked++;
}
else cc1100_statistic.packets_out_broadcast++;
goto final;
mode_before_final:
rflags.TX = false;
// Definitely set secure mode (CONST_RX -> RX, WOR -> WOR)
cc1100_go_after_tx();
final:
// Release mutex and return
cc1100_phy_mutex_unlock();
return return_code;
}
/*---------------------------------------------------------------------------*/
// RX Event Handler
/*---------------------------------------------------------------------------*/
bool cc1100_set_packet_monitor(packet_monitor_t monitor)
{
packet_monitor = monitor;
return true;
}
int cc1100_set_packet_handler(protocol_t protocol, packet_handler_t handler)
{
if (protocol > 7) return -1; // Only 3-bit value allowed
return pm_set_handler(&handler_table, protocol, handler);
}
static void cc1100_event_handler_function(void)
{
msg m;
while (1)
{
if (cc1100_watch_dog_period != 0) {
swtimer_remove(&cc1100_watch_dog);
}
// Test if any resource error has occurred
if (rflags.KT_RES_ERR)
{
rflags.KT_RES_ERR = false;
// possibly do something, e.g. log error condition
}
if (m.type == MSG_TIMER)
{
uint8_t state;
if (radio_mode == CC1100_MODE_CONSTANT_RX) {
state = cc1100_spi_read_status(CC1100_MARCSTATE) & MARC_STATE;
if ((state < 13 || state > 15) && radio_state == RADIO_RX && !rflags.TX) {
cc1100_statistic.watch_dog_resets++;
if (state != 1) {
cc1100_spi_strobe(CC1100_SIDLE);
}
cc1100_spi_strobe(CC1100_SFRX);
cc1100_go_receive();
}
} else {
// Radio mode is WOR, cannot read current MARC state, will
// always be IDLE. So do nothing here, e.g. disable watchdog.
}
}
while (rx_buffer_size > 0)
{
rx_buffer_t* packet = &rx_buffer[rx_buffer_head];
protocol_t p = R_FLAGS_PROTOCOL(packet->packet.flags);
if (packet_monitor != NULL) packet_monitor((void*)&packet->packet.data, MAX_DATA_LENGTH, p, &packet->info);
pm_invoke(&handler_table, p, (void*)&packet->packet.data, MAX_DATA_LENGTH, &packet->info);
dINT();
rx_buffer_size--;
rx_buffer_head++;
if (rx_buffer_head == RX_BUFF_SIZE) rx_buffer_head = 0;
eINT();
}
dINT();
if (rx_buffer_size == 0)
{
if (cc1100_watch_dog_period != 0) {
swtimer_set_msg(&cc1100_watch_dog, cc1100_watch_dog_period * 1000000L,
cc1100_event_handler_pid, NULL);
}
msg_receive(&m);
}
eINT();
}
}
/*---------------------------------------------------------------------------*/
// CC1100 packet (RX) ISR
/*---------------------------------------------------------------------------*/
void cc1100_phy_rx_handler(void)
{
msg m;
m.type = MSG_POLL;
bool dup = false;
bool res = false;
// Possible packet received, RX -> IDLE (0.1 us)
rflags.CAA = false;
rflags.MAN_WOR = false;
cc1100_statistic.packets_in++;
// If WOR timer set, delete it now (new one will be set at end of ISR)
if (wor_hwtimer_id != -1)
{
hwtimer_remove(wor_hwtimer_id);
wor_hwtimer_id = -1;
}
// Transfer packet into temporary buffer position
res = cc1100_spi_receive_packet((uint8_t*)&(rx_buffer[rx_buffer_tail].packet), sizeof(cc1100_packet_layer0_t));
if (res)
{
// Get packet pointer and store additional data in packet info structure
cc1100_packet_layer0_t* p = &(rx_buffer[rx_buffer_tail].packet);
rx_buffer[rx_buffer_tail].info.phy_src = p->phy_src;
rx_buffer[rx_buffer_tail].info.rssi = rflags.RSSI;
rx_buffer[rx_buffer_tail].info.lqi = rflags.LQI;
rx_buffer[rx_buffer_tail].info.promiscuous = false;
// Get protocol and id field out of flags field
uint8_t protocol = R_FLAGS_PROTOCOL(p->flags);
uint8_t identification = (p->flags & FLAGS_IDENTIFICATION);
// If received packet was an ACK (here we must be in
// TX lock state, otherwise we don't expect an ACK)
if (protocol == LAYER_1_PROTOCOL_LL_ACK && rflags.TX)
{
// And packet was for us
if (p->address == cc1100_get_address())
{
// Stop the burst
rflags.LL_ACK = true;
rflags.RSSI_SEND = p->phy_src;
rflags.TCP = (uint32_t)((uint16_t*)p->data)[0];
}
return;
}
else
{
// No ACK received so TOF is unpredictable
rflags.TOF = 0;
}
// If we are sending a burst, don't accept packets.
// Only ACKs are processed (for stopping the burst).
// Same if state machine is in TX lock.
if (radio_state == RADIO_SEND_BURST || rflags.TX)
{
cc1100_statistic.packets_in_while_tx++;
return;
}
// If buffer is currently full -> don't check sequence numbers, send
// ACK and restore state (keep always one position free for temporary packets)
if (rx_buffer_size >= RX_BUFF_SIZE-1) goto send_ack;
// Build 16 bit sequence number of layer 0 for fast check
uint16_t new_seq_num = p->phy_src;
new_seq_num <<= 8;
new_seq_num += identification;
// Duplicate packet detection
dup = true;
// If new and last sequence number are the same, then discard packet
if (last_seq_num != new_seq_num)
{
// Do a more precise check (takes more time) with larger buffer
if (!contains_seq_entry(p->phy_src, identification))
{
// Sequence number is new, no duplicate packet
dup = false;
// Store sequence number
add_seq_entry(p->phy_src, identification);
// Make temporary packet in RX buffer to a "real" packet which is processed
rx_buffer_size++;
if (rx_buffer_size > cc1100_statistic.rx_buffer_max) cc1100_statistic.rx_buffer_max = rx_buffer_size;
rx_buffer_tail++;
if (rx_buffer_tail == RX_BUFF_SIZE) rx_buffer_tail = 0;
// Send empty message to wake up receiver process.
// Receiver process could already be running (triggered by previous message),
// so function would return 0 and assume the receiver is not waiting but indeed
// all is working fine.
msg_send_int(&m, cc1100_event_handler_pid);
cc1100_statistic.packets_in_up++;
}
}
send_ack:
// If packet was send directly to us, send an ACK packet back to sender.
// But only not if the packet itself was a LL-ACK!
if (p->address == cc1100_get_address() && protocol != LAYER_1_PROTOCOL_LL_ACK)
{
send_link_level_ack(p->phy_src);
// After LL-ACK burst is over, reset number
last_seq_num = 0;
}
// If duplicate packet detected, clear rxBuffer position
if (dup)
{
cc1100_statistic.packets_in_dups++;
}
// If packet interrupted this nodes send call,
// don't change anything after this point.
if (radio_state == RADIO_AIR_FREE_WAITING)
{
cc1100_spi_strobe(CC1100_SRX);
hwtimer_wait(IDLE_TO_RX_TIME);
return;
}
// Valid packet. After a wake-up, the radio should be in IDLE.
// So put CC1100 to RX for WOR_TIMEOUT (have to manually put
// the radio back to sleep/WOR).
cc1100_spi_write_reg(CC1100_MCSM0, 0x08); // Turn off FS-Autocal
cc1100_spi_write_reg(CC1100_MCSM2, 0x07); // Configure RX_TIME (until end of packet)
if (radio_mode == CC1100_MODE_CONSTANT_RX) {
cc1100_spi_strobe(CC1100_SRX);
hwtimer_wait(IDLE_TO_RX_TIME);
radio_state = RADIO_RX;
// Return here if mode is CONSTANT_RX_MODE
return;
} else {
cc1100_spi_strobe(CC1100_SPWD);
radio_state = RADIO_PWD;
}
// Set hwtimer to put CC1100 back to RX after WOR_TIMEOUT_1
wor_hwtimer_id = hwtimer_set(WOR_TIMEOUT_1, cc1100_hwtimer_go_receive_wrapper, NULL);
if (wor_hwtimer_id == -1)
{
// Signal hwtimer resource error, radio stays in RX,
// so no big problem, only energy is wasted.
rflags.KT_RES_ERR = true;
}
}
else
{
// No ACK received so TOF is unpredictable
rflags.TOF = 0;
// CRC false or RX buffer full -> clear RX FIFO in both cases
last_seq_num = 0; // Reset for correct burst detection
cc1100_spi_strobe(CC1100_SIDLE); // Switch to IDLE (should already be)...
cc1100_spi_strobe(CC1100_SFRX); // ...for flushing the RX FIFO
// If packet interrupted this nodes send call,
// don't change anything after this point.
if (radio_state == RADIO_AIR_FREE_WAITING)
{
cc1100_spi_strobe(CC1100_SRX);
hwtimer_wait(IDLE_TO_RX_TIME);
return;
}
// If currently sending, exit here (don't go to RX/WOR)
if (radio_state == RADIO_SEND_BURST)
{
cc1100_statistic.packets_in_while_tx++;
return;
}
// No valid packet, so go back to RX/WOR as soon as possible
cc1100_go_receive();
}
}