mirror of
https://github.com/RIOT-OS/RIOT.git
synced 2024-12-29 04:50:03 +01:00
4c3e92f183
- Introduced enum type `thread_state_t` to replace preprocessor macros - Moved thread states to `sched.h` for two reasons: a) Because of the interdependencies of `sched.h` and `thread.h` keeping it in `thread.h` would result in ugly code. b) Theses thread states are defined from the schedulers point of view, so it actually makes senses to have it defined there
523 lines
16 KiB
C
523 lines
16 KiB
C
/*
|
|
* Copyright (C) 2014 Freie Universität Berlin
|
|
*
|
|
* This file is subject to the terms and conditions of the GNU Lesser
|
|
* General Public License v2.1. See the file LICENSE in the top level
|
|
* directory for more details.
|
|
*/
|
|
|
|
/**
|
|
* @defgroup core_thread Threading
|
|
* @ingroup core
|
|
* @brief Support for multi-threading
|
|
*
|
|
* Priorities
|
|
* ==========
|
|
*
|
|
* As RIOT is using a fixed priority @ref core_sched "scheduling algorithm",
|
|
* threads are scheduled based on their priority. The priority is fixed for
|
|
* every thread and specified during the thread's creation by the `priority`
|
|
* parameter.
|
|
*
|
|
* The lower the priority value, the higher the priority of the thread,
|
|
* with 0 being the highest possible priority.
|
|
*
|
|
* The lowest possible priority is @ref THREAD_PRIORITY_IDLE - 1.
|
|
*
|
|
* @note Assigning the same priority to two or more threads is usually not a
|
|
* good idea. A thread in RIOT may run until it yields (@ref
|
|
* thread_yield) or another thread with higher priority is runnable (@ref
|
|
* STATUS_ON_RUNQUEUE) again. Multiple threads with the same priority
|
|
* will therefore be scheduled cooperatively: when one of them is running,
|
|
* all others with the same priority depend on it to yield (or be interrupted
|
|
* by a thread with higher priority).
|
|
* This may make it difficult to determine when which of them gets
|
|
* scheduled and how much CPU time they will get. In most applications,
|
|
* the number of threads in application is significantly smaller than the
|
|
* number of available priorities, so assigning distinct priorities per
|
|
* thread should not be a problem. Only assign the same priority to
|
|
* multiple threads if you know what you are doing!
|
|
*
|
|
* Thread Behavior
|
|
* ===============
|
|
* In addition to the priority, flags can be used when creating a thread to
|
|
* alter the thread's behavior after creation. The following flags are available:
|
|
*
|
|
* Flags | Description
|
|
* ----------------------------- | --------------------------------------------------
|
|
* @ref THREAD_CREATE_SLEEPING | the thread will sleep until woken up manually
|
|
* @ref THREAD_CREATE_WOUT_YIELD | the thread might not run immediately after creation
|
|
* @ref THREAD_CREATE_STACKTEST | measures the stack's memory usage
|
|
*
|
|
* Thread creation
|
|
* ===============
|
|
* Creating a new thread is internally done in two steps:
|
|
* 1. the new thread's stack is initialized depending on the platform
|
|
* 2. the new thread is added to the scheduler and the scheduler is run (if not
|
|
* indicated otherwise)
|
|
*
|
|
* @note Creating threads from within an ISR is currently supported, however it
|
|
* is considered to be a bad programming practice and we strongly
|
|
* discourage you from doing so.
|
|
*
|
|
* Usage
|
|
* -----
|
|
* ~~~~~~~~~~~~~~~~~~~~~~~~ {.c}
|
|
* #include "thread.h"
|
|
*
|
|
* char rcv_thread_stack[THREAD_STACKSIZE_MAIN];
|
|
*
|
|
* void *rcv_thread(void *arg)
|
|
* {
|
|
* (void) arg;
|
|
* msg_t m;
|
|
*
|
|
* while (1) {
|
|
* msg_receive(&m);
|
|
* printf("Got msg from %" PRIkernel_pid "\n", m.sender_pid);
|
|
* }
|
|
*
|
|
* return NULL;
|
|
* }
|
|
*
|
|
* int main(void)
|
|
* {
|
|
* thread_create(rcv_thread_stack, sizeof(rcv_thread_stack),
|
|
* THREAD_PRIORITY_MAIN - 1, THREAD_CREATE_STACKTEST,
|
|
* rcv_thread, NULL, "rcv_thread");
|
|
* }
|
|
* ~~~~~~~~~~~~~~~~~~~~~~~~
|
|
*
|
|
* Reading from the top down, you can see that first, stack memory for our thread
|
|
* `rcv_thread` is preallocated, followed by an implementation of the thread's
|
|
* function. Communication between threads is done using @ref core_msg. In this
|
|
* case, `rcv_thread` will print the process id of each thread that sent a
|
|
* message to `rcv_thread`.
|
|
*
|
|
* After it has been properly defined, `rcv_thread` is created with a call to
|
|
* @ref thread_create() in `main()`. It is assigned a priority of
|
|
* `THREAD_PRIORITY_MAIN - 1`, i.e. a slightly *higher* priority than the main
|
|
* thread. Since neither the `THREAD_CREATE_SLEEPING` nor the
|
|
* `THREAD_CREATE_WOUT_YIELD` flag is set, `rcv_thread` will be executed
|
|
* immediately.
|
|
*
|
|
* @note If the messages to the thread are sent using @ref msg_try_send() or
|
|
* from an ISR, activate your thread's message queue by calling
|
|
* @ref msg_init_queue() to prevent messages from being dropped when
|
|
* they can't be handled right away. The same applies if you'd like
|
|
* msg_send() to your thread to be non-blocking. For more details, see
|
|
* @ref core_msg "the Messaging documentation".
|
|
*
|
|
* @{
|
|
*
|
|
* @file
|
|
* @brief Threading API
|
|
*
|
|
* @author Kaspar Schleiser <kaspar@schleiser.de>
|
|
*/
|
|
|
|
#ifndef THREAD_H
|
|
#define THREAD_H
|
|
|
|
#include "clist.h"
|
|
#include "cib.h"
|
|
#include "msg.h"
|
|
#include "cpu_conf.h"
|
|
#include "sched.h"
|
|
|
|
#ifdef MODULE_CORE_THREAD_FLAGS
|
|
#include "thread_flags.h"
|
|
#endif
|
|
|
|
#ifdef __cplusplus
|
|
extern "C" {
|
|
#endif
|
|
|
|
/**
|
|
* @brief Prototype for a thread entry function
|
|
*/
|
|
typedef void *(*thread_task_func_t)(void *arg);
|
|
|
|
/**
|
|
* @brief @c thread_t holds thread's context data.
|
|
*/
|
|
struct _thread {
|
|
char *sp; /**< thread's stack pointer */
|
|
thread_state_t status; /**< thread's status */
|
|
uint8_t priority; /**< thread's priority */
|
|
|
|
kernel_pid_t pid; /**< thread's process id */
|
|
|
|
#if defined(MODULE_CORE_THREAD_FLAGS) || defined(DOXYGEN)
|
|
thread_flags_t flags; /**< currently set flags */
|
|
#endif
|
|
|
|
clist_node_t rq_entry; /**< run queue entry */
|
|
|
|
#if defined(MODULE_CORE_MSG) || defined(MODULE_CORE_THREAD_FLAGS) \
|
|
|| defined(MODULE_CORE_MBOX) || defined(DOXYGEN)
|
|
void *wait_data; /**< used by msg, mbox and thread
|
|
flags */
|
|
#endif
|
|
#if defined(MODULE_CORE_MSG) || defined(DOXYGEN)
|
|
list_node_t msg_waiters; /**< threads waiting for their message
|
|
to be delivered to this thread
|
|
(i.e. all blocked sends) */
|
|
cib_t msg_queue; /**< index of this [thread's message queue]
|
|
(thread_t::msg_array), if any */
|
|
msg_t *msg_array; /**< memory holding messages sent
|
|
to this thread's message queue */
|
|
#endif
|
|
#if defined(DEVELHELP) || defined(SCHED_TEST_STACK) \
|
|
|| defined(MODULE_MPU_STACK_GUARD) || defined(DOXYGEN)
|
|
char *stack_start; /**< thread's stack start address */
|
|
#endif
|
|
#if defined(DEVELHELP) || defined(DOXYGEN)
|
|
const char *name; /**< thread's name */
|
|
int stack_size; /**< thread's stack size */
|
|
#endif
|
|
#ifdef HAVE_THREAD_ARCH_T
|
|
thread_arch_t arch; /**< architecture dependent part */
|
|
#endif
|
|
};
|
|
|
|
/**
|
|
* @def THREAD_STACKSIZE_DEFAULT
|
|
* @brief A reasonable default stack size that will suffice most smaller tasks
|
|
*
|
|
* @note This value must be defined by the CPU specific implementation, please
|
|
* take a look at @c cpu/$CPU/include/cpu_conf.h
|
|
*/
|
|
#ifndef THREAD_STACKSIZE_DEFAULT
|
|
#error THREAD_STACKSIZE_DEFAULT must be defined per CPU
|
|
#endif
|
|
#ifdef DOXYGEN
|
|
#define THREAD_STACKSIZE_DEFAULT
|
|
#endif
|
|
|
|
/**
|
|
* @def THREAD_STACKSIZE_IDLE
|
|
* @brief Size of the idle task's stack in bytes
|
|
*
|
|
* @note This value must be defined by the CPU specific implementation, please
|
|
* take a look at @c cpu/$CPU/include/cpu_conf.h
|
|
*/
|
|
#ifndef THREAD_STACKSIZE_IDLE
|
|
#error THREAD_STACKSIZE_IDLE must be defined per CPU
|
|
#endif
|
|
#ifdef DOXYGEN
|
|
#define THREAD_STACKSIZE_IDLE
|
|
#endif
|
|
|
|
/**
|
|
* @def THREAD_EXTRA_STACKSIZE_PRINTF
|
|
* @brief Size of the task's printf stack in bytes
|
|
*
|
|
* @note This value must be defined by the CPU specific implementation, please
|
|
* take a look at @c cpu/$CPU/include/cpu_conf.h
|
|
*/
|
|
#ifndef THREAD_EXTRA_STACKSIZE_PRINTF
|
|
#error THREAD_EXTRA_STACKSIZE_PRINTF must be defined per CPU
|
|
#endif
|
|
#ifdef DOXYGEN
|
|
#define THREAD_EXTRA_STACKSIZE_PRINTF
|
|
#endif
|
|
|
|
/**
|
|
* @def THREAD_STACKSIZE_MAIN
|
|
* @brief Size of the main task's stack in bytes
|
|
*/
|
|
#ifndef THREAD_STACKSIZE_MAIN
|
|
#define THREAD_STACKSIZE_MAIN (THREAD_STACKSIZE_DEFAULT + THREAD_EXTRA_STACKSIZE_PRINTF)
|
|
#endif
|
|
|
|
/**
|
|
* @brief Large stack size
|
|
*/
|
|
#ifndef THREAD_STACKSIZE_LARGE
|
|
#define THREAD_STACKSIZE_LARGE (THREAD_STACKSIZE_MEDIUM * 2)
|
|
#endif
|
|
|
|
/**
|
|
* @brief Medium stack size
|
|
*/
|
|
#ifndef THREAD_STACKSIZE_MEDIUM
|
|
#define THREAD_STACKSIZE_MEDIUM THREAD_STACKSIZE_DEFAULT
|
|
#endif
|
|
|
|
/**
|
|
* @brief Small stack size
|
|
*/
|
|
#ifndef THREAD_STACKSIZE_SMALL
|
|
#define THREAD_STACKSIZE_SMALL (THREAD_STACKSIZE_MEDIUM / 2)
|
|
#endif
|
|
|
|
/**
|
|
* @brief Tiny stack size
|
|
*/
|
|
#ifndef THREAD_STACKSIZE_TINY
|
|
#define THREAD_STACKSIZE_TINY (THREAD_STACKSIZE_MEDIUM / 4)
|
|
#endif
|
|
|
|
/**
|
|
* @brief Minimum stack size
|
|
*/
|
|
#ifndef THREAD_STACKSIZE_MINIMUM
|
|
#define THREAD_STACKSIZE_MINIMUM (sizeof(thread_t))
|
|
#endif
|
|
|
|
/**
|
|
* @def THREAD_PRIORITY_MIN
|
|
* @brief Least priority a thread can have
|
|
*/
|
|
#define THREAD_PRIORITY_MIN (SCHED_PRIO_LEVELS-1)
|
|
|
|
/**
|
|
* @def THREAD_PRIORITY_IDLE
|
|
* @brief Priority of the idle thread
|
|
*/
|
|
#define THREAD_PRIORITY_IDLE (THREAD_PRIORITY_MIN)
|
|
|
|
/**
|
|
* @def THREAD_PRIORITY_MAIN
|
|
* @brief Priority of the main thread
|
|
*/
|
|
#define THREAD_PRIORITY_MAIN (THREAD_PRIORITY_MIN - (SCHED_PRIO_LEVELS/2))
|
|
|
|
/**
|
|
* @name Optional flags for controlling a threads initial state
|
|
* @{
|
|
*/
|
|
/**
|
|
* @brief Set the new thread to sleeping. It must be woken up manually.
|
|
**/
|
|
#define THREAD_CREATE_SLEEPING (1)
|
|
|
|
/**
|
|
* @brief Currently not implemented
|
|
*/
|
|
#define THREAD_AUTO_FREE (2)
|
|
|
|
/**
|
|
* @brief Do not automatically call thread_yield() after creation: the newly
|
|
* created thread might not run immediately. Purely for optimization.
|
|
* Any other context switch (i.e. an interrupt) can still start the
|
|
* thread at any time!
|
|
*/
|
|
#define THREAD_CREATE_WOUT_YIELD (4)
|
|
|
|
/**
|
|
* @brief Write markers into the thread's stack to measure stack usage (for
|
|
* debugging and profiling purposes)
|
|
*/
|
|
#define THREAD_CREATE_STACKTEST (8)
|
|
/** @} */
|
|
|
|
/**
|
|
* @brief Creates a new thread.
|
|
*
|
|
* For an in-depth discussion of thread priorities, behavior and and flags,
|
|
* see @ref core_thread.
|
|
*
|
|
* @note Avoid assigning the same priority to two or more threads.
|
|
* @note Creating threads from within an ISR is currently supported, however it
|
|
* is considered to be a bad programming practice and we strongly
|
|
* discourage you from doing so.
|
|
*
|
|
* @param[out] stack start address of the preallocated stack memory
|
|
* @param[in] stacksize the size of the thread's stack in bytes
|
|
* @param[in] priority priority of the new thread, lower mean higher priority
|
|
* @param[in] flags optional flags for the creation of the new thread
|
|
* @param[in] task_func pointer to the code that is executed in the new thread
|
|
* @param[in] arg the argument to the function
|
|
* @param[in] name a human readable descriptor for the thread
|
|
*
|
|
* @return PID of newly created task on success
|
|
* @return -EINVAL, if @p priority is greater than or equal to
|
|
* @ref SCHED_PRIO_LEVELS
|
|
* @return -EOVERFLOW, if there are too many threads running already
|
|
*/
|
|
kernel_pid_t thread_create(char *stack,
|
|
int stacksize,
|
|
char priority,
|
|
int flags,
|
|
thread_task_func_t task_func,
|
|
void *arg,
|
|
const char *name);
|
|
|
|
/**
|
|
* @brief Retreive a thread control block by PID.
|
|
* @details This is a bound-checked variant of accessing `sched_threads[pid]` directly.
|
|
* If you know that the PID is valid, then don't use this function.
|
|
* @param[in] pid Thread to retreive.
|
|
* @return `NULL` if the PID is invalid or there is no such thread.
|
|
*/
|
|
volatile thread_t *thread_get(kernel_pid_t pid);
|
|
|
|
/**
|
|
* @brief Returns the status of a process
|
|
*
|
|
* @param[in] pid the PID of the thread to get the status from
|
|
*
|
|
* @return status of the thread
|
|
* @return `STATUS_NOT_FOUND` if pid is unknown
|
|
*/
|
|
int thread_getstatus(kernel_pid_t pid);
|
|
|
|
/**
|
|
* @brief Puts the current thread into sleep mode. Has to be woken up externally.
|
|
*/
|
|
void thread_sleep(void);
|
|
|
|
/**
|
|
* @brief Lets current thread yield.
|
|
*
|
|
* @details The current thread will resume operation immediately,
|
|
* if there is no other ready thread with the same or a higher priority.
|
|
*
|
|
* Differently from thread_yield_higher() the current thread will be put to the
|
|
* end of the thread's in its priority class.
|
|
*
|
|
* @see thread_yield_higher()
|
|
*/
|
|
void thread_yield(void);
|
|
|
|
/**
|
|
* @brief Lets current thread yield in favor of a higher prioritized thread.
|
|
*
|
|
* @details The current thread will resume operation immediately,
|
|
* if there is no other ready thread with a higher priority.
|
|
*
|
|
* Differently from thread_yield() the current thread will be scheduled next
|
|
* in its own priority class, i.e. it stays the first thread in its
|
|
* priority class.
|
|
*
|
|
* @see thread_yield()
|
|
*/
|
|
void thread_yield_higher(void);
|
|
|
|
/**
|
|
* @brief Wakes up a sleeping thread.
|
|
*
|
|
* @param[in] pid the PID of the thread to be woken up
|
|
*
|
|
* @return `1` on success
|
|
* @return `STATUS_NOT_FOUND` if pid is unknown or not sleeping
|
|
*/
|
|
int thread_wakeup(kernel_pid_t pid);
|
|
|
|
/**
|
|
* @brief Returns the process ID of the currently running thread
|
|
*
|
|
* @return obviously you are not a golfer.
|
|
*/
|
|
static inline kernel_pid_t thread_getpid(void)
|
|
{
|
|
extern volatile kernel_pid_t sched_active_pid;
|
|
return sched_active_pid;
|
|
}
|
|
|
|
/**
|
|
* @brief Gets called upon thread creation to set CPU registers
|
|
*
|
|
* @param[in] task_func First function to call within the thread
|
|
* @param[in] arg Argument to supply to task_func
|
|
* @param[in] stack_start Start address of the stack
|
|
* @param[in] stack_size Stack size
|
|
*
|
|
* @return stack pointer
|
|
*/
|
|
char *thread_stack_init(thread_task_func_t task_func, void *arg, void *stack_start, int stack_size);
|
|
|
|
/**
|
|
* @brief Add thread to list, sorted by priority (internal)
|
|
*
|
|
* This will add @p thread to @p list sorted by the thread priority.
|
|
* It reuses the thread's rq_entry field.
|
|
* Used internally by msg and mutex implementations.
|
|
*
|
|
* @note Only use for threads *not on any runqueue* and with interrupts
|
|
* disabled.
|
|
*
|
|
* @param[in] list ptr to list root node
|
|
* @param[in] thread thread to add
|
|
*/
|
|
void thread_add_to_list(list_node_t *list, thread_t *thread);
|
|
|
|
/**
|
|
* @brief Returns the name of a process
|
|
*
|
|
* @note when compiling without DEVELHELP, this *always* returns NULL!
|
|
*
|
|
* @param[in] pid the PID of the thread to get the name from
|
|
*
|
|
* @return the threads name
|
|
* @return `NULL` if pid is unknown
|
|
*/
|
|
const char *thread_getname(kernel_pid_t pid);
|
|
|
|
#ifdef DEVELHELP
|
|
/**
|
|
* @brief Measures the stack usage of a stack
|
|
*
|
|
* Only works if the thread was created with the flag THREAD_CREATE_STACKTEST.
|
|
*
|
|
* @param[in] stack the stack you want to measure. try `sched_active_thread->stack_start`
|
|
*
|
|
* @return the amount of unused space of the thread's stack
|
|
*/
|
|
uintptr_t thread_measure_stack_free(char *stack);
|
|
#endif /* DEVELHELP */
|
|
|
|
/**
|
|
* @brief Get the number of bytes used on the ISR stack
|
|
*/
|
|
int thread_isr_stack_usage(void);
|
|
|
|
/**
|
|
* @brief Get the current ISR stack pointer
|
|
*/
|
|
void *thread_isr_stack_pointer(void);
|
|
|
|
/**
|
|
* @brief Get the start of the ISR stack
|
|
*/
|
|
void *thread_isr_stack_start(void);
|
|
|
|
/**
|
|
* @brief Print the current stack to stdout
|
|
*/
|
|
void thread_stack_print(void);
|
|
|
|
/**
|
|
* @brief Prints human readable, ps-like thread information for debugging purposes
|
|
*/
|
|
void thread_print_stack(void);
|
|
|
|
/**
|
|
* @brief Checks if a thread has an initialized message queue
|
|
*
|
|
* @see @ref msg_init_queue()
|
|
*
|
|
* @param[in] thread The thread to check for
|
|
*
|
|
* @return `== 0`, if @p thread has no initialized message queue
|
|
* @return `!= 0`, if @p thread has its message queue initialized
|
|
*/
|
|
static inline int thread_has_msg_queue(const volatile struct _thread *thread)
|
|
{
|
|
#if defined(MODULE_CORE_MSG) || defined(DOXYGEN)
|
|
return (thread->msg_array != NULL);
|
|
#else
|
|
(void)thread;
|
|
return 0;
|
|
#endif
|
|
}
|
|
|
|
#ifdef __cplusplus
|
|
}
|
|
#endif
|
|
|
|
/** @} */
|
|
#endif /* THREAD_H */
|