mirror of
https://github.com/RIOT-OS/RIOT.git
synced 2025-01-18 12:52:44 +01:00
465 lines
14 KiB
C
465 lines
14 KiB
C
/*-
|
|
* Copyright 2005 Colin Percival
|
|
* Copyright 2013 Christian Mehlis & René Kijewski
|
|
* Copyright 2016 Martin Landsmann <martin.landsmann@haw-hamburg.de>
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* $FreeBSD: src/lib/libmd/sha256c.c,v 1.2 2006/01/17 15:35:56 phk Exp $
|
|
*/
|
|
|
|
/**
|
|
* @ingroup sys_hashes
|
|
* @{
|
|
*
|
|
* @file
|
|
* @brief SHA256 hash function implementation
|
|
*
|
|
* @author Colin Percival
|
|
* @author Christian Mehlis
|
|
* @author Rene Kijewski
|
|
* @author Martin Landsmann
|
|
*
|
|
* @}
|
|
*/
|
|
|
|
#include <string.h>
|
|
#include <assert.h>
|
|
|
|
#include "hashes/sha256.h"
|
|
#include "board.h"
|
|
|
|
#ifdef __BIG_ENDIAN__
|
|
/* Copy a vector of big-endian uint32_t into a vector of bytes */
|
|
#define be32enc_vect memcpy
|
|
|
|
/* Copy a vector of bytes into a vector of big-endian uint32_t */
|
|
#define be32dec_vect memcpy
|
|
|
|
#else /* !__BIG_ENDIAN__ */
|
|
|
|
/*
|
|
* Encode a length len/4 vector of (uint32_t) into a length len vector of
|
|
* (unsigned char) in big-endian form. Assumes len is a multiple of 4.
|
|
*/
|
|
static void be32enc_vect(void *dst_, const void *src_, size_t len)
|
|
{
|
|
uint32_t *dst = dst_;
|
|
const uint32_t *src = src_;
|
|
|
|
for (size_t i = 0; i < len / 4; i++) {
|
|
dst[i] = __builtin_bswap32(src[i]);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Decode a big-endian length len vector of (unsigned char) into a length
|
|
* len/4 vector of (uint32_t). Assumes len is a multiple of 4.
|
|
*/
|
|
#define be32dec_vect be32enc_vect
|
|
|
|
#endif /* __BYTE_ORDER__ != __ORDER_BIG_ENDIAN__ */
|
|
|
|
/* Elementary functions used by SHA256 */
|
|
#define Ch(x, y, z) ((x & (y ^ z)) ^ z)
|
|
#define Maj(x, y, z) ((x & (y | z)) | (y & z))
|
|
#define SHR(x, n) (x >> n)
|
|
#define ROTR(x, n) ((x >> n) | (x << (32 - n)))
|
|
#define S0(x) (ROTR(x, 2) ^ ROTR(x, 13) ^ ROTR(x, 22))
|
|
#define S1(x) (ROTR(x, 6) ^ ROTR(x, 11) ^ ROTR(x, 25))
|
|
#define s0(x) (ROTR(x, 7) ^ ROTR(x, 18) ^ SHR(x, 3))
|
|
#define s1(x) (ROTR(x, 17) ^ ROTR(x, 19) ^ SHR(x, 10))
|
|
|
|
static const uint32_t K[64] = {
|
|
0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5,
|
|
0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5,
|
|
0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3,
|
|
0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174,
|
|
0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc,
|
|
0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,
|
|
0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7,
|
|
0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967,
|
|
0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13,
|
|
0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85,
|
|
0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3,
|
|
0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,
|
|
0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5,
|
|
0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3,
|
|
0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208,
|
|
0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2,
|
|
};
|
|
|
|
/*
|
|
* SHA256 block compression function. The 256-bit state is transformed via
|
|
* the 512-bit input block to produce a new state.
|
|
*/
|
|
static void sha256_transform(uint32_t *state, const unsigned char block[64])
|
|
{
|
|
uint32_t W[64];
|
|
uint32_t S[8];
|
|
|
|
/* 1. Prepare message schedule W. */
|
|
be32dec_vect(W, block, 64);
|
|
for (int i = 16; i < 64; i++) {
|
|
W[i] = s1(W[i - 2]) + W[i - 7] + s0(W[i - 15]) + W[i - 16];
|
|
}
|
|
|
|
/* 2. Initialize working variables. */
|
|
memcpy(S, state, 32);
|
|
|
|
/* 3. Mix. */
|
|
for (int i = 0; i < 64; ++i) {
|
|
uint32_t e = S[(68 - i) % 8], f = S[(69 - i) % 8];
|
|
uint32_t g = S[(70 - i) % 8], h = S[(71 - i) % 8];
|
|
uint32_t t0 = h + S1(e) + Ch(e, f, g) + W[i] + K[i];
|
|
|
|
uint32_t a = S[(64 - i) % 8], b = S[(65 - i) % 8];
|
|
uint32_t c = S[(66 - i) % 8], d = S[(67 - i) % 8];
|
|
uint32_t t1 = S0(a) + Maj(a, b, c);
|
|
|
|
S[(67 - i) % 8] = d + t0;
|
|
S[(71 - i) % 8] = t0 + t1;
|
|
}
|
|
|
|
/* 4. Mix local working variables into global state */
|
|
for (int i = 0; i < 8; i++) {
|
|
state[i] += S[i];
|
|
}
|
|
}
|
|
|
|
static unsigned char PAD[64] = {
|
|
0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
};
|
|
|
|
/* Add padding and terminating bit-count. */
|
|
static void sha256_pad(sha256_context_t *ctx)
|
|
{
|
|
/*
|
|
* Convert length to a vector of bytes -- we do this now rather
|
|
* than later because the length will change after we pad.
|
|
*/
|
|
unsigned char len[8];
|
|
|
|
be32enc_vect(len, ctx->count, 8);
|
|
|
|
/* Add 1--64 bytes so that the resulting length is 56 mod 64 */
|
|
uint32_t r = (ctx->count[1] >> 3) & 0x3f;
|
|
uint32_t plen = (r < 56) ? (56 - r) : (120 - r);
|
|
sha256_update(ctx, PAD, (size_t) plen);
|
|
|
|
/* Add the terminating bit-count */
|
|
sha256_update(ctx, len, 8);
|
|
}
|
|
|
|
/* SHA-256 initialization. Begins a SHA-256 operation. */
|
|
void sha256_init(sha256_context_t *ctx)
|
|
{
|
|
/* Zero bits processed so far */
|
|
ctx->count[0] = ctx->count[1] = 0;
|
|
|
|
/* Magic initialization constants */
|
|
ctx->state[0] = 0x6A09E667;
|
|
ctx->state[1] = 0xBB67AE85;
|
|
ctx->state[2] = 0x3C6EF372;
|
|
ctx->state[3] = 0xA54FF53A;
|
|
ctx->state[4] = 0x510E527F;
|
|
ctx->state[5] = 0x9B05688C;
|
|
ctx->state[6] = 0x1F83D9AB;
|
|
ctx->state[7] = 0x5BE0CD19;
|
|
}
|
|
|
|
/* Add bytes into the hash */
|
|
void sha256_update(sha256_context_t *ctx, const uint8_t *data, size_t len)
|
|
{
|
|
/* Number of bytes left in the buffer from previous updates */
|
|
uint32_t r = (ctx->count[1] >> 3) & 0x3f;
|
|
|
|
/* Convert the length into a number of bits */
|
|
uint32_t bitlen1 = ((uint32_t) len) << 3;
|
|
uint32_t bitlen0 = ((uint32_t) len) >> 29;
|
|
|
|
/* Update number of bits */
|
|
if ((ctx->count[1] += bitlen1) < bitlen1) {
|
|
ctx->count[0]++;
|
|
}
|
|
|
|
ctx->count[0] += bitlen0;
|
|
|
|
/* Handle the case where we don't need to perform any transforms */
|
|
if (len < 64 - r) {
|
|
memcpy(&ctx->buf[r], data, len);
|
|
return;
|
|
}
|
|
|
|
/* Finish the current block */
|
|
const unsigned char *src = data;
|
|
|
|
memcpy(&ctx->buf[r], src, 64 - r);
|
|
sha256_transform(ctx->state, ctx->buf);
|
|
src += 64 - r;
|
|
len -= 64 - r;
|
|
|
|
/* Perform complete blocks */
|
|
while (len >= 64) {
|
|
sha256_transform(ctx->state, src);
|
|
src += 64;
|
|
len -= 64;
|
|
}
|
|
|
|
/* Copy left over data into buffer */
|
|
memcpy(ctx->buf, src, len);
|
|
}
|
|
|
|
/*
|
|
* SHA-256 finalization. Pads the input data, exports the hash value,
|
|
* and clears the context state.
|
|
*/
|
|
void sha256_final(sha256_context_t *ctx, uint8_t *dst)
|
|
{
|
|
/* Add padding */
|
|
sha256_pad(ctx);
|
|
|
|
/* Write the hash */
|
|
be32enc_vect(dst, ctx->state, 32);
|
|
|
|
/* Clear the context state */
|
|
memset((void *) ctx, 0, sizeof(*ctx));
|
|
}
|
|
|
|
unsigned char *sha256(const unsigned char *d, size_t n, unsigned char *md)
|
|
{
|
|
sha256_context_t c;
|
|
static unsigned char m[SHA256_DIGEST_LENGTH];
|
|
|
|
if (md == NULL) {
|
|
md = m;
|
|
}
|
|
|
|
sha256_init(&c);
|
|
sha256_update(&c, d, n);
|
|
sha256_final(&c, md);
|
|
|
|
return md;
|
|
}
|
|
|
|
const unsigned char *hmac_sha256(const unsigned char *key,
|
|
size_t key_length,
|
|
const unsigned *message,
|
|
size_t message_length,
|
|
unsigned char *result)
|
|
{
|
|
unsigned char k[SHA256_INTERNAL_BLOCK_SIZE];
|
|
|
|
memset((void *)k, 0x00, SHA256_INTERNAL_BLOCK_SIZE);
|
|
|
|
if (key_length > SHA256_INTERNAL_BLOCK_SIZE) {
|
|
sha256(key, key_length, k);
|
|
}
|
|
else {
|
|
memcpy((void *)k, key, key_length);
|
|
}
|
|
|
|
/*
|
|
* create the inner and outer keypads
|
|
* rising hamming distance enforcing i_* and o_* are distinct
|
|
* in at least one bit
|
|
*/
|
|
unsigned char o_key_pad[SHA256_INTERNAL_BLOCK_SIZE];
|
|
unsigned char i_key_pad[SHA256_INTERNAL_BLOCK_SIZE];
|
|
|
|
for (size_t i = 0; i < SHA256_INTERNAL_BLOCK_SIZE; ++i) {
|
|
o_key_pad[i] = 0x5c ^ k[i];
|
|
i_key_pad[i] = 0x36 ^ k[i];
|
|
}
|
|
|
|
/*
|
|
* Create the inner hash
|
|
* tmp = hash(i_key_pad CONCAT message)
|
|
*/
|
|
sha256_context_t c;
|
|
unsigned char tmp[SHA256_DIGEST_LENGTH];
|
|
|
|
sha256_init(&c);
|
|
sha256_update(&c, i_key_pad, SHA256_INTERNAL_BLOCK_SIZE);
|
|
sha256_update(&c, (uint8_t *)message, message_length);
|
|
sha256_final(&c, tmp);
|
|
|
|
static unsigned char m[SHA256_DIGEST_LENGTH];
|
|
|
|
if (result == NULL) {
|
|
result = m;
|
|
}
|
|
|
|
/*
|
|
* Create the outer hash
|
|
* result = hash(o_key_pad CONCAT tmp)
|
|
*/
|
|
sha256_init(&c);
|
|
sha256_update(&c, o_key_pad, SHA256_INTERNAL_BLOCK_SIZE);
|
|
sha256_update(&c, tmp, SHA256_DIGEST_LENGTH);
|
|
sha256_final(&c, result);
|
|
|
|
return result;
|
|
}
|
|
|
|
/**
|
|
* @brief helper to compute sha256 inplace for the given buffer
|
|
*
|
|
* @param[in, out] element the buffer to compute a sha256 and store it back to it
|
|
*
|
|
*/
|
|
static inline void sha256_inplace(unsigned char element[SHA256_DIGEST_LENGTH])
|
|
{
|
|
sha256_context_t ctx;
|
|
|
|
sha256_init(&ctx);
|
|
sha256_update(&ctx, element, SHA256_DIGEST_LENGTH);
|
|
sha256_final(&ctx, element);
|
|
}
|
|
|
|
unsigned char *sha256_chain(const unsigned char *seed, size_t seed_length,
|
|
size_t elements, unsigned char *tail_element)
|
|
{
|
|
unsigned char tmp_element[SHA256_DIGEST_LENGTH];
|
|
|
|
/* assert if no sha256-chain can be created */
|
|
assert(elements >= 2);
|
|
|
|
/* 1st iteration */
|
|
sha256(seed, seed_length, tmp_element);
|
|
|
|
/* perform consecutive iterations minus the first one */
|
|
for (size_t i = 0; i < (elements - 1); ++i) {
|
|
sha256_inplace(tmp_element);
|
|
}
|
|
|
|
/* store the result */
|
|
memcpy(tail_element, tmp_element, SHA256_DIGEST_LENGTH);
|
|
|
|
return tail_element;
|
|
}
|
|
|
|
unsigned char *sha256_chain_with_waypoints(const unsigned char *seed,
|
|
size_t seed_length,
|
|
size_t elements,
|
|
unsigned char *tail_element,
|
|
sha256_chain_idx_elm_t *waypoints,
|
|
size_t *waypoints_length)
|
|
{
|
|
/* assert if no sha256-chain can be created */
|
|
assert(elements >= 2);
|
|
|
|
/* assert to prevent division by 0 */
|
|
assert(*waypoints_length > 0);
|
|
|
|
/* assert if no waypoints can be created */
|
|
assert(*waypoints_length > 1);
|
|
|
|
/* if we have enough space we store the whole chain */
|
|
if (*waypoints_length >= elements) {
|
|
/* 1st iteration */
|
|
sha256(seed, seed_length, waypoints[0].element);
|
|
waypoints[0].index = 0;
|
|
|
|
/* perform consecutive iterations starting at index 1*/
|
|
for (size_t i = 1; i < elements; ++i) {
|
|
sha256_context_t ctx;
|
|
sha256_init(&ctx);
|
|
sha256_update(&ctx, waypoints[(i - 1)].element, SHA256_DIGEST_LENGTH);
|
|
sha256_final(&ctx, waypoints[i].element);
|
|
waypoints[i].index = i;
|
|
}
|
|
|
|
/* store the result */
|
|
memcpy(tail_element, waypoints[(elements - 1)].element, SHA256_DIGEST_LENGTH);
|
|
*waypoints_length = (elements - 1);
|
|
|
|
return tail_element;
|
|
}
|
|
else {
|
|
unsigned char tmp_element[SHA256_DIGEST_LENGTH];
|
|
size_t waypoint_streak = (elements / *waypoints_length);
|
|
|
|
/* 1st waypoint iteration */
|
|
sha256(seed, seed_length, tmp_element);
|
|
for (size_t i = 1; i < waypoint_streak; ++i) {
|
|
sha256_inplace(tmp_element);
|
|
}
|
|
memcpy(waypoints[0].element, tmp_element, SHA256_DIGEST_LENGTH);
|
|
waypoints[0].index = (waypoint_streak - 1);
|
|
|
|
/* index of the current computed element in the chain */
|
|
size_t index = (waypoint_streak - 1);
|
|
|
|
/* consecutive waypoint iterations */
|
|
size_t j = 1;
|
|
for (; j < *waypoints_length; ++j) {
|
|
for (size_t i = 0; i < waypoint_streak; ++i) {
|
|
sha256_inplace(tmp_element);
|
|
index++;
|
|
}
|
|
memcpy(waypoints[j].element, tmp_element, SHA256_DIGEST_LENGTH);
|
|
waypoints[j].index = index;
|
|
}
|
|
|
|
/* store/pass the last used index in the waypoint array */
|
|
*waypoints_length = (j - 1);
|
|
|
|
/* remaining iterations down to elements */
|
|
for (size_t i = index; i < (elements - 1); ++i) {
|
|
sha256_inplace(tmp_element);
|
|
}
|
|
|
|
/* store the result */
|
|
memcpy(tail_element, tmp_element, SHA256_DIGEST_LENGTH);
|
|
|
|
return tail_element;
|
|
}
|
|
}
|
|
|
|
int sha256_chain_verify_element(unsigned char *element,
|
|
size_t element_index,
|
|
unsigned char *tail_element,
|
|
size_t chain_length)
|
|
{
|
|
unsigned char tmp_element[SHA256_DIGEST_LENGTH];
|
|
|
|
int delta_count = (chain_length - element_index);
|
|
|
|
/* assert if we have an index mismatch */
|
|
assert(delta_count >= 1);
|
|
|
|
memcpy((void *)tmp_element, (void *)element, SHA256_DIGEST_LENGTH);
|
|
|
|
/* perform all consecutive iterations down to tail_element */
|
|
for (int i = 0; i < (delta_count - 1); ++i) {
|
|
sha256_inplace(tmp_element);
|
|
}
|
|
|
|
/* return if the computed element equals the tail_element */
|
|
return (memcmp(tmp_element, tail_element, SHA256_DIGEST_LENGTH) != 0);
|
|
}
|