1
0
mirror of https://github.com/RIOT-OS/RIOT.git synced 2024-12-29 04:50:03 +01:00
RIOT/sys/net/gnrc/transport_layer/udp/gnrc_udp.c
Marian Buschsieweke 3b6fa61829
sys: Cleanup access to internal variables
Replace direct accesses to sched_active_thread and sched_active_pid with
the helper functions thread_getpid() and thread_get_active(). This serves
two purposes:

1. It makes accidental writes to those variable from outside core less likely.
2. Casting off the volatile qualifier is now well contained to those two
   functions
2020-08-24 20:28:11 +02:00

314 lines
8.9 KiB
C

/*
* Copyright (C) 2015 Freie Universität Berlin
*
* This file is subject to the terms and conditions of the GNU Lesser
* General Public License v2.1. See the file LICENSE in the top level
* directory for more details.
*/
/**
* @ingroup net_gnrc_udp
* @{
*
* @file
* @brief UDP implementation
*
* @author Hauke Petersen <hauke.petersen@fu-berlin.de>
* @}
*/
#include <stdint.h>
#include <errno.h>
#include "byteorder.h"
#include "msg.h"
#include "thread.h"
#include "utlist.h"
#include "net/ipv6/hdr.h"
#include "net/gnrc/udp.h"
#include "net/gnrc.h"
#include "net/gnrc/icmpv6/error.h"
#include "net/inet_csum.h"
#define ENABLE_DEBUG (0)
#include "debug.h"
/**
* @brief Save the UDP's thread PID for later reference
*/
static kernel_pid_t _pid = KERNEL_PID_UNDEF;
/**
* @brief Allocate memory for the UDP thread's stack
*/
#if ENABLE_DEBUG
static char _stack[GNRC_UDP_STACK_SIZE + THREAD_EXTRA_STACKSIZE_PRINTF];
#else
static char _stack[GNRC_UDP_STACK_SIZE];
#endif
/**
* @brief Calculate the UDP checksum dependent on the network protocol
*
* @note If the checksum turns out to be 0x0000, the function returns 0xffff
* as specified in RFC768
*
* @param[in] pkt pointer to the packet in the packet buffer
* @param[in] pseudo_hdr pointer to the network layer header
* @param[in] payload pointer to the payload
*
* @return the checksum of the pkt in host byte order
* @return 0 on error
*/
static uint16_t _calc_csum(gnrc_pktsnip_t *hdr, gnrc_pktsnip_t *pseudo_hdr,
gnrc_pktsnip_t *payload)
{
uint16_t csum = 0;
uint16_t len = (uint16_t)hdr->size;
/* process the payload */
while (payload && payload != hdr && payload != pseudo_hdr) {
csum = inet_csum_slice(csum, (uint8_t *)(payload->data), payload->size, len);
len += (uint16_t)payload->size;
payload = payload->next;
}
/* process applicable UDP header bytes */
csum = inet_csum(csum, (uint8_t *)hdr->data, sizeof(udp_hdr_t));
switch (pseudo_hdr->type) {
#ifdef MODULE_GNRC_IPV6
case GNRC_NETTYPE_IPV6:
csum = ipv6_hdr_inet_csum(csum, pseudo_hdr->data, PROTNUM_UDP, len);
break;
#endif
default:
(void)len;
return 0;
}
/* return inverted results */
if (csum == 0xFFFF) {
/* https://tools.ietf.org/html/rfc8200#section-8.1
* bullet 4
* "if that computation yields a result of zero, it must be changed
* to hex FFFF for placement in the UDP header."
*/
return 0xFFFF;
} else {
return ~csum;
}
}
static void _receive(gnrc_pktsnip_t *pkt)
{
gnrc_pktsnip_t *udp, *ipv6;
udp_hdr_t *hdr;
uint32_t port;
/* mark UDP header */
udp = gnrc_pktbuf_start_write(pkt);
if (udp == NULL) {
DEBUG("udp: unable to get write access to packet\n");
gnrc_pktbuf_release(pkt);
return;
}
pkt = udp;
ipv6 = gnrc_pktsnip_search_type(pkt, GNRC_NETTYPE_IPV6);
assert(ipv6 != NULL);
if ((pkt->next != NULL) && (pkt->next->type == GNRC_NETTYPE_UDP) &&
(pkt->next->size == sizeof(udp_hdr_t))) {
/* UDP header was already marked. Take it. */
udp = pkt->next;
}
else {
udp = gnrc_pktbuf_mark(pkt, sizeof(udp_hdr_t), GNRC_NETTYPE_UDP);
if (udp == NULL) {
DEBUG("udp: error marking UDP header, dropping packet\n");
gnrc_pktbuf_release(pkt);
return;
}
}
/* mark payload as Type: UNDEF */
pkt->type = GNRC_NETTYPE_UNDEF;
/* get explicit pointer to UDP header */
hdr = (udp_hdr_t *)udp->data;
/* validate checksum */
if (byteorder_ntohs(hdr->checksum) == 0) {
/* RFC 8200 Section 8.1
* "IPv6 receivers must discard UDP packets containing a zero checksum,
* and should log the error."
*/
DEBUG("udp: received packet with zero checksum, dropping it\n");
gnrc_pktbuf_release(pkt);
return;
}
if (_calc_csum(udp, ipv6, pkt) != 0xFFFF) {
DEBUG("udp: received packet with invalid checksum, dropping it\n");
gnrc_pktbuf_release(pkt);
return;
}
/* get port (netreg demux context) */
port = (uint32_t)byteorder_ntohs(hdr->dst_port);
/* send payload to receivers */
if (!gnrc_netapi_dispatch_receive(GNRC_NETTYPE_UDP, port, pkt)) {
DEBUG("udp: unable to forward packet as no one is interested in it\n");
/* TODO determine if IPv6 packet, when IPv4 is implemented */
gnrc_icmpv6_error_dst_unr_send(ICMPV6_ERROR_DST_UNR_PORT, pkt);
gnrc_pktbuf_release(pkt);
}
}
static void _send(gnrc_pktsnip_t *pkt)
{
udp_hdr_t *hdr;
gnrc_pktsnip_t *udp_snip, *tmp;
gnrc_nettype_t target_type = pkt->type;
/* write protect first header */
tmp = gnrc_pktbuf_start_write(pkt);
if (tmp == NULL) {
DEBUG("udp: cannot send packet: unable to allocate packet\n");
gnrc_pktbuf_release(pkt);
return;
}
pkt = tmp;
udp_snip = tmp->next;
/* get and write protect until udp snip */
while ((udp_snip != NULL) && (udp_snip->type != GNRC_NETTYPE_UDP)) {
udp_snip = gnrc_pktbuf_start_write(udp_snip);
if (udp_snip == NULL) {
DEBUG("udp: cannot send packet: unable to allocate packet\n");
gnrc_pktbuf_release(pkt);
return;
}
tmp->next = udp_snip;
tmp = udp_snip;
udp_snip = udp_snip->next;
}
assert(udp_snip != NULL);
/* write protect UDP snip */
udp_snip = gnrc_pktbuf_start_write(udp_snip);
if (udp_snip == NULL) {
DEBUG("udp: cannot send packet: unable to allocate packet\n");
gnrc_pktbuf_release(pkt);
return;
}
tmp->next = udp_snip;
hdr = (udp_hdr_t *)udp_snip->data;
/* fill in size field */
hdr->length = byteorder_htons(gnrc_pkt_len(udp_snip));
/* set to IPv6, if first header is netif header */
if (target_type == GNRC_NETTYPE_NETIF) {
target_type = pkt->next->type;
}
/* and forward packet to the network layer */
if (!gnrc_netapi_dispatch_send(target_type, GNRC_NETREG_DEMUX_CTX_ALL,
pkt)) {
DEBUG("udp: cannot send packet: network layer not found\n");
gnrc_pktbuf_release(pkt);
}
}
static void *_event_loop(void *arg)
{
(void)arg;
msg_t msg, reply;
msg_t msg_queue[GNRC_UDP_MSG_QUEUE_SIZE];
gnrc_netreg_entry_t netreg = GNRC_NETREG_ENTRY_INIT_PID(GNRC_NETREG_DEMUX_CTX_ALL,
thread_getpid());
/* preset reply message */
reply.type = GNRC_NETAPI_MSG_TYPE_ACK;
reply.content.value = (uint32_t)-ENOTSUP;
/* initialize message queue */
msg_init_queue(msg_queue, GNRC_UDP_MSG_QUEUE_SIZE);
/* register UPD at netreg */
gnrc_netreg_register(GNRC_NETTYPE_UDP, &netreg);
/* dispatch NETAPI messages */
while (1) {
msg_receive(&msg);
switch (msg.type) {
case GNRC_NETAPI_MSG_TYPE_RCV:
DEBUG("udp: GNRC_NETAPI_MSG_TYPE_RCV\n");
_receive(msg.content.ptr);
break;
case GNRC_NETAPI_MSG_TYPE_SND:
DEBUG("udp: GNRC_NETAPI_MSG_TYPE_SND\n");
_send(msg.content.ptr);
break;
case GNRC_NETAPI_MSG_TYPE_SET:
case GNRC_NETAPI_MSG_TYPE_GET:
msg_reply(&msg, &reply);
break;
default:
DEBUG("udp: received unidentified message\n");
break;
}
}
/* never reached */
return NULL;
}
int gnrc_udp_calc_csum(gnrc_pktsnip_t *hdr, gnrc_pktsnip_t *pseudo_hdr)
{
uint16_t csum;
if ((hdr == NULL) || (pseudo_hdr == NULL)) {
return -EFAULT;
}
if (hdr->type != GNRC_NETTYPE_UDP) {
return -EBADMSG;
}
csum = _calc_csum(hdr, pseudo_hdr, hdr->next);
if (csum == 0) {
return -ENOENT;
}
((udp_hdr_t *)hdr->data)->checksum = byteorder_htons(csum);
return 0;
}
gnrc_pktsnip_t *gnrc_udp_hdr_build(gnrc_pktsnip_t *payload, uint16_t src,
uint16_t dst)
{
assert((src > 0) && (dst > 0));
gnrc_pktsnip_t *res;
udp_hdr_t *hdr;
/* allocate header */
res = gnrc_pktbuf_add(payload, NULL, sizeof(udp_hdr_t), GNRC_NETTYPE_UDP);
if (res == NULL) {
return NULL;
}
/* initialize header */
hdr = (udp_hdr_t *)res->data;
hdr->src_port = byteorder_htons(src);
hdr->dst_port = byteorder_htons(dst);
hdr->checksum = byteorder_htons(0);
return res;
}
int gnrc_udp_init(void)
{
/* check if thread is already running */
if (_pid == KERNEL_PID_UNDEF) {
/* start UDP thread */
_pid = thread_create(_stack, sizeof(_stack), GNRC_UDP_PRIO,
THREAD_CREATE_STACKTEST, _event_loop, NULL, "udp");
}
return _pid;
}