1
0
mirror of https://github.com/RIOT-OS/RIOT.git synced 2024-12-29 04:50:03 +01:00
RIOT/boards/avsextrem/drivers/avsextrem-smb380.c
René Kijewski 2cb4166c3e all over the place: use sched_active_pid
In many places we needlessly use `sched_active_thread->pid` whilst we
already have `sched_active_pid` with the same value, and one less
indirection.

`thread_getpid()` is made `static inline` so that there is no penalty in
using this function over accessing `sched_active_pid` directly.
2014-08-17 21:04:25 +02:00

1334 lines
36 KiB
C

/*
* msba2acc-smb380.c - implementation of the Driver for the SMB380 acceleration
* sensor on the AVSEXTREM board.
* Copyright (C) 2013 Freie Universität Berlin
*
* This file is subject to the terms and conditions of the GNU Lesser
* General Public License v2.1. See the file LICENSE in the top level
* directory for more details.
*
*/
/**
* @file
* @internal
* @brief SMB380 acceleration sensor driver for the LPC2387 on the
* AVSEXTREM board.
*
* @author Marco Ziegert <ziegert@inf.fu-berlin.de>
* @author Zakaria Kasmi <zkasmi@inf.fu-berlin.de>
* @version $Revision: 3854 $
*
* @note $Id: msba2acc-smb380.c 3854 2010-01-18 15:27:01Z zkasmi $
*/
#include <stdio.h>
#include <stdlib.h>
#include <malloc.h>
#include "lpc23xx.h" /* LPC23XX/24xx Peripheral Registers */
#include "cpu.h"
#include "lpm.h"
#include "VIC.h"
#include "kernel.h"
#include "ssp0-board.h"
#include "smb380-board.h"
#include "hwtimer.h"
#include "sched.h"
#include "msg.h"
#include "irq.h"
#include "gpioint.h"
#include "math.h"
#include "lpc2387.h"
kernel_pid_t simple_pid = KERNEL_PID_UNDEF;
int16_t simple_buffer[4];
volatile int16_t *ringBuff_X = NULL;
volatile int16_t *ringBuff_Y = NULL;
volatile int16_t *ringBuff_Z = NULL;
volatile int16_t *ringBuff_T = NULL;
uint16_t readPointerPos[SMB380_RING_BUFF_MAX_THREADS];
kernel_pid_t PointerList[SMB380_RING_BUFF_MAX_THREADS];
static msg_t wakeupmessage;
/*
* pointer to a user-defined function which is called during a writepointer
* action
*/
uint8_t (*smb380function)(int16_t *);
uint16_t sampleRateSMB380; // condition if range-check should be done
bool dynRange = false;
uint8_t counter_Decreasing = 0;
volatile uint16_t interruptTicksSMB380;
typedef struct {
u_int writePointerPos; //Writepointer position
/*
* check value for updated range settings (only needed for multiplication
* in Float-mode
*/
uint8_t countRange;
uint8_t range; //current range
} settingsSMB380;
settingsSMB380 settings;
// measuring temperature dependent internal sample rate of SMB380
static volatile uint32_t tickStart = 0;
static volatile uint32_t tickLastSample = 0;
static volatile uint32_t tickCurrentSamples = 0;
uint8_t initRingReadPointerforCurrentThread(void);
uint8_t getRingReadPointerforCurrentThread(void);
void wakeUpRegisteredProcesses(void);
uint8_t smb380emptyfunction(int16_t *);
static void SMB380_extIntHandler(void);
extern unsigned long ktimer_now(void);
float SMB380_getSampleRatio(void)
{
return ((1.0 / ((float)(tickLastSample - tickStart) / tickCurrentSamples)) *
100000);
}
uint8_t smb380emptyfunction(int16_t *value)
{
return 1;
}
uint8_t SMB380_HystereseFunctionSample(int16_t *value)
{
static int16_t x = 0, y = 0, z = 0;
static uint8_t counter = 0;
int16_t delta = abs(value[0] - x) + abs(value[1] - y) + abs(value[2] - z);
if (delta < 40) { //TODO: delta and counter are constant values, change it!
counter++;
}
else {
counter = 0;
}
x = value[0];
y = value[1];
z = value[2];
if (smb380_mode == SMB380_THRESHOLD) {
SMB380_disableAnyMotionLimit();
SMB380_enableNewDataInt();
smb380_mode = SMB380_CONTINOUS;
printf("Threshold: x=%i, y=%i, z=%i\n\r", value[0], value[1], value[2]);
}
if ((counter == 100) && (smb380_mode == SMB380_POLL)) {
//MZ SMB380_disableNewDataInt();
//SMB380_setAnyMotionLimit(100,0);
SMB380_enableAnyMotionLimit();
smb380_mode = SMB380_THRESHOLD;
counter = 0;
}
else if (counter == 100) {
SMB380_disableNewDataInt();
//SMB380_setAnyMotionLimit(100,0);
SMB380_enableAnyMotionLimit();
smb380_mode = SMB380_FALSEALERT;
counter = 0;
return 0;
}
return 1;
}
static void SMB380_simple_interrupthandler(void)
{
lpm_awake();
SMB380_getAcceleration(SMB380_X_AXIS, NULL, &simple_buffer[0]);
SMB380_getAcceleration(SMB380_Y_AXIS, NULL, &simple_buffer[1]);
SMB380_getAcceleration(SMB380_Z_AXIS, NULL, &simple_buffer[2]);
simple_buffer[3] = SMB380_getTemperature();
if (interruptTicksSMB380 >= sampleRateSMB380 - 1) {
interruptTicksSMB380 = 0;
wakeupmessage.type = MSG_TYPE_SMB380_WAKEUP;
msg_send(&wakeupmessage, simple_pid, 0);
}
else {
interruptTicksSMB380++;
}
return;
}
// enables simple Interrupt driven Mode
uint8_t SMB380_init_simple(uint16_t samplerate, uint8_t bandwidth, uint8_t
range)
{
SSP0Init();
interruptTicksSMB380 = 0;
simple_pid = sched_active_pid;
gpioint_set(0, BIT1, GPIOINT_RISING_EDGE, &SMB380_simple_interrupthandler);
SMB380_softReset();
hwtimer_wait(HWTIMER_TICKS(100000));
SMB380_disableUpperLimit();
SMB380_disableLowerLimit();
SMB380_setSampleRate(samplerate);
SMB380_setBandWidth(bandwidth);
SMB380_setRange(range);
return 0;
}
uint8_t SMB380_init(uint8_t (*func)(int16_t *))
{
SSP0Init();
#if SMB380_EXTINT_MODE
if (gpioint_set(0, BIT1, GPIOINT_RISING_EDGE, &SMB380_extIntHandler));
#endif
interruptTicksSMB380 = 0;
if (func != NULL) {
smb380function = func;
}
else {
smb380function = smb380emptyfunction;
}
//smb380function = SMB380_HystereseFunctionSample; //placeholder
SMB380_softReset();
hwtimer_wait(HWTIMER_TICKS(100000));
SMB380_disableUpperLimit();
SMB380_disableLowerLimit();
smb380_mode = SMB380_POLL;
SMB380_setSampleRate(SMB380_SAMPLE_RATE_MAX); //set output to 3000 Hz
settings.writePointerPos = 0;
settings.range = 0;
settings.countRange = 0;
for (int i = 0; i < SMB380_RING_BUFF_MAX_THREADS; i++) {
readPointerPos[i] = 0;
PointerList[i] = 0;
}
ringBuff_X = (int16_t *)malloc(SMB380_RING_BUFF_SIZE * sizeof(int16_t));
ringBuff_Y = (int16_t *)malloc(SMB380_RING_BUFF_SIZE * sizeof(int16_t));
ringBuff_Z = (int16_t *)malloc(SMB380_RING_BUFF_SIZE * sizeof(int16_t));
ringBuff_T = (int16_t *)malloc(SMB380_RING_BUFF_SIZE * sizeof(int16_t));
if ((ringBuff_X == NULL) | (ringBuff_Y == NULL) | (ringBuff_Z == NULL) |
(ringBuff_T == NULL)) {
if (ringBuff_X != NULL) {
free((int16_t *)ringBuff_X);
}
if (ringBuff_Y != NULL) {
free((int16_t *)ringBuff_Y);
}
if (ringBuff_Z != NULL) {
free((int16_t *)ringBuff_Z);
}
if (ringBuff_T != NULL) {
free((int16_t *)ringBuff_T);
}
return 0;
}
return 1;
}
static void SMB380_extIntHandler(void)
{
int16_t accInt[4];
lpm_awake(); //initializes clock
SMB380_getAcceleration(SMB380_X_AXIS, NULL, &accInt[0]);
SMB380_getAcceleration(SMB380_Y_AXIS, NULL, &accInt[1]);
SMB380_getAcceleration(SMB380_Z_AXIS, NULL, &accInt[2]);
accInt[3] = SMB380_getTemperature();
writeRingBuff(accInt);
// printf("SMB380 acc x,y,z: [%i|%i|%i|%2.3f]\r\n", accInt[0], accInt[1],
// accInt[2], acc[3]);
// printf("SMB380 acc x,y,z: [%2.3f|%2.3f|%2.3f|%2.3f]\r\n\n\n", acc[0],
// acc[1], acc[2], acc[3]);
// printf("Nach Interrupt Reset:\n");
// SMB380_ShowMemory();
}
void SMB380_setSampleRate(uint16_t rate)
{
if (rate > 0 && rate <= SMB380_SAMPLE_RATE_MAX) {
sampleRateSMB380 = SMB380_SAMPLE_RATE_MAX / rate;
}
else {
sampleRateSMB380 = 1;
}
}
uint16_t SMB380_getSampleRate(void)
{
return SMB380_SAMPLE_RATE_MAX / sampleRateSMB380;
}
uint8_t SMB380_Prepare(void)
{
return SSP0Prepare(SMB380_ACC, 16, 1, 1, 8000);
}
uint8_t SMB380_Unprepare(void)
{
return SSP0Unprepare(SMB380_ACC);
}
// return the pointerNo related with the current thread
uint8_t getRingReadPointerforCurrentThread(void)
{
uint8_t pointerNo = 0;
while ((PointerList[pointerNo] != sched_active_pid) &&
(pointerNo < SMB380_RING_BUFF_MAX_THREADS)) {
pointerNo++;
}
return pointerNo;
}
uint8_t initRingReadPointerforCurrentThread(void)
{
//TODO: make it Threadsafe
uint8_t pointerNo = 0;
while ((PointerList[pointerNo] > 0) &&
(pointerNo < SMB380_RING_BUFF_MAX_THREADS)) {
pointerNo++;
}
if (pointerNo == SMB380_RING_BUFF_MAX_THREADS) {
return 0;
}
else {
PointerList[pointerNo] = sched_active_pid;
readPointerPos[pointerNo] = settings.writePointerPos;
return 1;
}
}
void freeRingReadPointer(void)
{
//Should be Threadsafe
uint8_t pointerNo = getRingReadPointerforCurrentThread();
if (pointerNo != SMB380_RING_BUFF_MAX_THREADS) {
PointerList[pointerNo] = 0;
}
}
void actualizeRingReadPointer(void)
{
uint8_t pointerNo = getRingReadPointerforCurrentThread();
if (pointerNo != SMB380_RING_BUFF_MAX_THREADS) {
readPointerPos[pointerNo] = settings.writePointerPos;
}
}
//TODO: more read-pointer
uint8_t readRingBuff(int16_t *value)
{
uint8_t pointerNo = getRingReadPointerforCurrentThread();
/*
* If thread is not known to read on the ringbuffer, try adding him to the
* list of known threads, otherwise exit with error
*/
if (pointerNo == SMB380_RING_BUFF_MAX_THREADS) {
if (!initRingReadPointerforCurrentThread()) {
//printf("%sNo Readpointer left, maximum of %u is reached!\n\r",
// SMB380_DEBUG_MESSAGE, SMB380_RING_BUFF_MAX_THREADS);
return 0;
}
else {
pointerNo = getRingReadPointerforCurrentThread();
}
}
if (readPointerPos[pointerNo] == settings.writePointerPos) {
value[0] = 0;
value[1] = 0;
value[2] = 0;
value[3] = 0;
return 0;
}
value[0] = ringBuff_X[readPointerPos[pointerNo]];
value[1] = ringBuff_Y[readPointerPos[pointerNo]];
value[2] = ringBuff_Z[readPointerPos[pointerNo]];
value[3] = ringBuff_T[readPointerPos[pointerNo]];
readPointerPos[pointerNo] += 1;
if (readPointerPos[pointerNo] == SMB380_RING_BUFF_SIZE) {
readPointerPos[pointerNo] = 0;
}
return 1;
}
//TODO: more read-pointer
uint8_t writeRingBuff(int16_t *value)
{
if (smb380_mode == SMB380_FALSEALERT) {
smb380_mode = SMB380_THRESHOLD;
return 0;
}
if ((interruptTicksSMB380 >= sampleRateSMB380 - 1) ||
(smb380_mode == SMB380_THRESHOLD)) {
interruptTicksSMB380 = 0;
/* measuring temperature dependent internal sample rate of SMB380 */
if (smb380_mode == SMB380_CONTINOUS) {
tickLastSample = hwtimer_now();
tickCurrentSamples++;
}
ringBuff_X[settings.writePointerPos] = value[0];
ringBuff_Y[settings.writePointerPos] = value[1];
ringBuff_Z[settings.writePointerPos] = value[2];
ringBuff_T[settings.writePointerPos] = value[3];
/* check for increasing range if dynRange is true */
if (dynRange) {
smb380function = checkRange;
}
else {
smb380function = smb380emptyfunction;
}
smb380function(value);
//printf("Werte: x=%i, y=%i, z=%i\n\r",value[0], value[1], value[2]);
//vgpio_toggle(&gpio_led_green);
settings.writePointerPos += 1;
if (settings.writePointerPos == SMB380_RING_BUFF_SIZE) {
settings.writePointerPos = 0;
}
wakeUpRegisteredProcesses();
return 1;
}
else {
interruptTicksSMB380++;
return 0;
}
}
void SMB380_activateDynRangeSet(uint8_t activate)
{
switch (activate) {
case 0:
dynRange = false ;
break;
case 1:
dynRange = true ;
break;
}
}
/*
* checking for in-/decreasing range
*/
uint8_t checkRange(int16_t *value)
{
bool increased = false;
// printf("CurrentValues: %i %i %i \r\n", xyzTMP[0], xyzTMP[1], xyzTMP[2]);
// determination of max and min value
int16_t maxValue = value[0]; // max(xValue, max(yValue, zValue));
int16_t minValue = value[0]; // min(xValue, min(yValue, zValue));
for (int i = 1; i < 3; i++) {
if (value[i] > maxValue) {
maxValue = value[i];
}
if (value[i] < minValue) {
minValue = value[i];
}
}
int8_t isRange = SMB380_getRange();
//increase range immediately
switch (isRange) {
case 2:
if ((maxValue > 1800) || (minValue < -1800)) {
SMB380_setRange(SMB380_RANGE_4G);
increased = true;
printf("=== Set range from 2 g to 4 g ===\r\n");
}
break;
case 4:
if ((maxValue > 3800) || (minValue < -3800)) {
SMB380_setRange(SMB380_RANGE_8G);
increased = true;
printf("=== Set range from 4 g to 8 g ===\r\n");
}
break;
case 8:
break;
}
/* check for decreasing range */
if (increased) {
counter_Decreasing = 0;
}
else {
//decrease range after 10 consecutive relevant values
switch (isRange) {
case 2:
break;
case 4:
if ((maxValue < 2000) && (minValue > -2000)) {
if (counter_Decreasing >= 9) {
SMB380_setRange(SMB380_RANGE_2G);
printf("=== Set range from 4 g to 2 g ===\r\n");
counter_Decreasing = 0;
}
else {
counter_Decreasing++;
}
}
else {
counter_Decreasing = 0;
}
break;
case 8:
if ((maxValue < 4000) && (minValue > -4000)) {
if (counter_Decreasing >= 9) {
SMB380_setRange(SMB380_RANGE_4G);
printf("=== Set range from 8 g to 4 g ===\r\n");
counter_Decreasing = 0;
}
else {
counter_Decreasing++;
}
}
else {
counter_Decreasing = 0;
}
break;
}
}
return 0;
}
void wakeUpRegisteredProcesses(void)
{
uint8_t pointerNo = 0;
//wake up waiting processes
wakeupmessage.type = MSG_TYPE_SMB380_WAKEUP;
while ((PointerList[pointerNo] > 0) &&
(pointerNo < SMB380_RING_BUFF_MAX_THREADS)) {
msg_send(&wakeupmessage, PointerList[pointerNo], false);
pointerNo++;
}
}
int16_t SMB380_getTemperature(void)
{
int16_t t = 0;
unsigned long cpsr = disableIRQ();
SMB380_Prepare();
SMB380_ssp_write(SMB380_TEMP, 0, SMB380_READ_REGISTER);
// t = (SMB380_ssp_read() & 0xFF) / 2.0 + SMB380_TEMP_OFFSET;
t = (SMB380_ssp_read() & 0xFF);
t = (t >> 1) + SMB380_TEMP_OFFSET;
SMB380_Unprepare();
restoreIRQ(cpsr);
return t;
}
void SMB380_getAcceleration(unsigned char axis, int16_t *pAbs, int16_t *pMg)
{
unsigned short ur;
if (!settings.countRange && (pMg != NULL)) {
settings.countRange = 1;
settings.range = SMB380_getRange();
}
unsigned long cpsr = disableIRQ();
SMB380_Prepare();
switch (axis) {
case SMB380_X_AXIS:
SMB380_ssp_write(SMB380_ACC_X_MSB, 0, SMB380_READ_REGISTER);
SMB380_ssp_write(SMB380_ACC_X_LSB_NEWDATA, 0, SMB380_READ_REGISTER);
break;
case SMB380_Y_AXIS:
SMB380_ssp_write(SMB380_ACC_Y_MSB, 0, SMB380_READ_REGISTER);
SMB380_ssp_write(SMB380_ACC_Y_LSB_NEWDATA, 0, SMB380_READ_REGISTER);
break;
default:
SMB380_ssp_write(SMB380_ACC_Z_MSB, 0, SMB380_READ_REGISTER);
SMB380_ssp_write(SMB380_ACC_Z_LSB_NEWDATA, 0, SMB380_READ_REGISTER);
}
ur = (SMB380_ssp_read() & SMB380_ACC_MSB_MASK) << 2;
ur |= (SMB380_ssp_read() & SMB380_ACC_LSB_MASK) >> 6;
SMB380_Unprepare();
restoreIRQ(cpsr);
if (pAbs != NULL) {
if (ur & BIT9) { //ur<0
*pAbs = ur | 0xFC00;
}
else {
*pAbs = ur & 0x03FF;
}
}
if (pMg != NULL) {
if (ur & BIT9) { //ur<0
*pMg = -(((settings.range * (512 - (ur & 0x1FF))) * 2000) / 1024);
}
else {
*pMg = ((settings.range * ur) * 2000) / 1024;
}
}
}
unsigned char SMB380_getChipID(void)
{
unsigned char ur = 0;
unsigned long cpsr = disableIRQ();
SMB380_Prepare();
SMB380_ssp_write(SMB380_CHIP_ID, 0, 0);
ur = (unsigned char)(SMB380_ssp_read() & SMB380_CHIP_ID_MASK);
restoreIRQ(cpsr);
return ur;
}
void SMB380_setWakeUpPause(unsigned char duration)
{
unsigned char utemp;
unsigned long cpsr = disableIRQ();
SMB380_Prepare();
SMB380_ssp_write(SMB380_CONTROL4, 0, SMB380_READ_REGISTER);
utemp = SMB380_ssp_read();
utemp &= ~SMB380_CONTROL4_WAKEUP_PAUSE_MASK;
utemp |= (duration & (0x3) << 1);//+1;
SMB380_ssp_write(SMB380_CONTROL4, utemp, SMB380_WRITE_REGISTER);
SMB380_ssp_read();
SMB380_Unprepare();
restoreIRQ(cpsr);
}
unsigned char SMB380_getWakeUpPause(void)
{
unsigned char up;
unsigned long cpsr = disableIRQ();
SMB380_Prepare();
SMB380_ssp_write(SMB380_CONTROL4, 0, SMB380_READ_REGISTER);
up = (unsigned char)SMB380_ssp_read();
SMB380_Unprepare();
restoreIRQ(cpsr);
up &= SMB380_CONTROL4_WAKEUP_PAUSE_MASK;
up = up >> 1;
return up;
}
void SMB380_setBandWidth(unsigned char bandWidth)
{
unsigned char utemp;
if ((bandWidth == SMB380_BAND_WIDTH_100HZ) |
(bandWidth == SMB380_BAND_WIDTH_1500HZ) |
(bandWidth == SMB380_BAND_WIDTH_190HZ) |
(bandWidth == SMB380_BAND_WIDTH_25HZ) |
(bandWidth == SMB380_BAND_WIDTH_375HZ) |
(bandWidth == SMB380_BAND_WIDTH_50HZ) |
(bandWidth == SMB380_BAND_WIDTH_750HZ)) {
unsigned long cpsr = disableIRQ();
SMB380_Prepare();
SMB380_ssp_write(SMB380_CONTROL3, 0, SMB380_READ_REGISTER);
utemp = SMB380_ssp_read();
utemp &= ~SMB380_CONTROL3_BANDWITH_MASK;
utemp |= (bandWidth & 0x7);
SMB380_ssp_write(SMB380_CONTROL3, utemp, SMB380_WRITE_REGISTER);
SMB380_ssp_read();
SMB380_Unprepare();
restoreIRQ(cpsr);
}
}
void SMB380_setRange(unsigned char range)
{
unsigned char utemp = 0;
if (range != 0x3) {
unsigned long cpsr = disableIRQ();
SMB380_Prepare();
SMB380_ssp_write(SMB380_CONTROL3, 0, SMB380_READ_REGISTER);
utemp = (unsigned char)SMB380_ssp_read();
utemp &= ~SMB380_CONTROL3_RANGE_MASK;
utemp |= (range & 0x3) << 3;
SMB380_ssp_write(SMB380_CONTROL3, utemp, SMB380_WRITE_REGISTER);
SMB380_ssp_read();
SMB380_Unprepare();
restoreIRQ(cpsr);
settings.countRange = 0;
}
}
unsigned char SMB380_getRange(void)
{
unsigned char ur;
unsigned long cpsr = disableIRQ();
SMB380_Prepare();
SMB380_ssp_write(SMB380_CONTROL3, 0, SMB380_READ_REGISTER);
ur = (SMB380_ssp_read() & SMB380_CONTROL3_RANGE_MASK) >> 3;
SMB380_Unprepare();
restoreIRQ(cpsr);
switch (ur) {
case SMB380_RANGE_2G:
return 2;
case SMB380_RANGE_4G:
return 4;
case SMB380_RANGE_8G:
return 8;
default:
return 4;
}
}
unsigned char SMB380_getBandWidth(void)
{
unsigned char uBand;
unsigned long cpsr = disableIRQ();
SMB380_Prepare();
SMB380_ssp_write(SMB380_CONTROL3, 0, SMB380_READ_REGISTER);
uBand = SMB380_ssp_read() & SMB380_CONTROL3_BANDWITH_MASK;
SMB380_Unprepare();
restoreIRQ(cpsr);
return uBand;
}
int16_t SMB380_getBandWidthAbs(void)
{
unsigned char uBand;
uBand = SMB380_getBandWidth();
switch (uBand) {
case SMB380_BAND_WIDTH_25HZ:
return 25;
case SMB380_BAND_WIDTH_50HZ:
return 50;
case SMB380_BAND_WIDTH_100HZ:
return 100;
case SMB380_BAND_WIDTH_190HZ:
return 190;
case SMB380_BAND_WIDTH_375HZ:
return 375;
case SMB380_BAND_WIDTH_750HZ:
return 750;
case SMB380_BAND_WIDTH_1500HZ:
return 1500;
default:
return uBand;
}
}
void SMB380_softReset(void)
{
unsigned char ur;
unsigned long cpsr = disableIRQ();
SMB380_Prepare();
SMB380_ssp_write(SMB380_CONTROL1, SMB380_CONTROL1_SOFT_RESET_MASK,
SMB380_WRITE_REGISTER);
ur = ((unsigned char)SMB380_ssp_read()) & SMB380_CONTROL1_SOFT_RESET_MASK;
SMB380_Unprepare();
restoreIRQ(cpsr);
ur = ur >> 1;
}
void SMB380_setCustomerReg(unsigned char data)
{
unsigned long cpsr = disableIRQ();
SMB380_Prepare();
SMB380_ssp_write(SMB380_CUST1, data, SMB380_WRITE_REGISTER);
SMB380_ssp_read();
SMB380_Unprepare();
restoreIRQ(cpsr);
}
unsigned char SMB380_getCustomerReg(void)
{
unsigned uReg = 0;
unsigned long cpsr = disableIRQ();
SMB380_Prepare();
SMB380_ssp_write(SMB380_CUST1, 0, SMB380_READ_REGISTER);
uReg = (unsigned char)SMB380_ssp_read();
SMB380_Unprepare();
restoreIRQ(cpsr);
return uReg;
}
// Selftest
void SMB380_Selftest_1(void)
{
unsigned char uReg = 0;
unsigned long cpsr = disableIRQ();
SMB380_Prepare();
SMB380_ssp_write(SMB380_LG_THRES, 6, SMB380_WRITE_REGISTER);
//SSP0Init();
SMB380_ssp_read();
SMB380_ssp_write(SMB380_LG_DUR, 0, SMB380_WRITE_REGISTER);
//SSP0Init();
SMB380_ssp_read();
SMB380_ssp_write(SMB380_CONTROL1, 0, SMB380_READ_REGISTER);
uReg = (unsigned char)SMB380_ssp_read();
uReg &= ~SMB380_CONTROL1_SELF_TEST_1_MASK;
uReg |= 0x01 << 3;
SMB380_ssp_write(SMB380_CONTROL1, uReg, SMB380_WRITE_REGISTER);
// SSP0Init();
SMB380_ssp_read();
SMB380_Unprepare();
restoreIRQ(cpsr);
}
void SMB380_ShowMemory(void)
{
uint16_t uReg = 0;
uint8_t bitMask[16];
printf("SMB380 Speicher\n\r");
unsigned long cpsr;
for (unsigned char regAd = 0x16; regAd > 0; regAd--) {
cpsr = disableIRQ();
SMB380_Prepare();
SMB380_ssp_write(regAd - 1, 0, SMB380_READ_REGISTER);
uReg = SMB380_ssp_read();
SMB380_Unprepare();
restoreIRQ(cpsr);
printf("Register: = %X: 0x%X = ", regAd - 1, uReg);
for (int pos = 0; pos < 16; pos++) { //uReg != 0)
bitMask[15 - pos] = uReg % 2;
uReg = uReg / 2;
}
for (int pos = 8; pos < 16; pos++) { //uReg != 0)
printf("%d", bitMask[pos]);
if ((pos % 4) == 0) {
printf(" ");
}
}
printf("\n");
}
}
void SMB380_setUpperLimit(void)
{
unsigned long cpsr = disableIRQ();
SMB380_Prepare();
SMB380_ssp_write(SMB380_HG_THRES, 128, SMB380_WRITE_REGISTER); //1g
SMB380_ssp_read();
SMB380_ssp_write(SMB380_HG_DUR, 0, SMB380_WRITE_REGISTER);
SMB380_ssp_read();
SMB380_Unprepare();
restoreIRQ(cpsr);
}
void SMB380_enableUpperLimit(void)
{
unsigned short uReg;
unsigned long cpsr = disableIRQ();
SMB380_Prepare();
SMB380_ssp_write(SMB380_CONTROL2, 0, SMB380_READ_REGISTER);
uReg = SMB380_ssp_read();
SMB380_ssp_write(SMB380_CONTROL2, uReg | SMB380_CONTROL2_ENABLE_HG_MASK,
SMB380_WRITE_REGISTER);
SMB380_ssp_read();
SMB380_Unprepare();
restoreIRQ(cpsr);
}
void SMB380_disableUpperLimit(void)
{
unsigned short uReg;
unsigned long cpsr = disableIRQ();
SMB380_Prepare();
SMB380_ssp_write(SMB380_CONTROL2, 0, SMB380_READ_REGISTER);
uReg = SMB380_ssp_read();
SMB380_ssp_write(SMB380_CONTROL2, uReg & ~SMB380_CONTROL2_ENABLE_HG_MASK,
SMB380_WRITE_REGISTER);
SMB380_ssp_read();
SMB380_Unprepare();
restoreIRQ(cpsr);
}
void SMB380_enableLowerLimit(void)
{
unsigned short uReg;
unsigned long cpsr = disableIRQ();
SMB380_Prepare();
SMB380_ssp_write(SMB380_CONTROL2, 0, SMB380_READ_REGISTER);
uReg = SMB380_ssp_read();
SMB380_ssp_write(SMB380_CONTROL2, uReg | SMB380_CONTROL2_ENABLE_LG_MASK,
SMB380_WRITE_REGISTER);
SMB380_ssp_read();
SMB380_Unprepare();
restoreIRQ(cpsr);
}
void SMB380_disableLowerLimit(void)
{
unsigned short uReg;
unsigned long cpsr = disableIRQ();
SMB380_Prepare();
SMB380_ssp_write(SMB380_CONTROL2, 0, SMB380_READ_REGISTER);
uReg = SMB380_ssp_read();
SMB380_ssp_write(SMB380_CONTROL2, uReg & ~SMB380_CONTROL2_ENABLE_LG_MASK,
SMB380_WRITE_REGISTER);
SMB380_ssp_read();
SMB380_Unprepare();
restoreIRQ(cpsr);
}
/* @param gvaluefloat - value is in mg
* @param gvalueint - value in range of 0 to 512
* Choose one of them, set the other to zero
*/
uint8_t SMB380_setAnyMotionLimit(uint16_t mg, uint16_t gvalueint)
{
uint8_t threshold = 0;
if (mg != 0) {
threshold = mg / (15.6 * (SMB380_getRange() / 2));
}
else if (gvalueint != 0) {
/* Scaling for different gRanges is not needed */
threshold = ceil(((gvalueint * 2000) / 512.0) / 15.6);
}
else {
return 0;
}
unsigned long cpsr = disableIRQ();
SMB380_Prepare();
/* 0,3g = 300 / 15,6mg = 19 */
SMB380_ssp_write(SMB380_ANY_MOTION_THRES, threshold, SMB380_WRITE_REGISTER);
SMB380_ssp_read();
//Set duration at this point
SMB380_ssp_write(SMB380_ANY_MOTION_DUR_HYST, 0, SMB380_READ_REGISTER);
SMB380_ssp_read();
SMB380_Unprepare();
restoreIRQ(cpsr);
return 1;
}
void SMB380_enableAnyMotionLimit(void)
{
unsigned short uReg;
unsigned long cpsr = disableIRQ();
SMB380_Prepare();
SMB380_ssp_write(SMB380_CONTROL4, 0, SMB380_READ_REGISTER);
uReg = SMB380_ssp_read();
SMB380_ssp_write(SMB380_CONTROL4, uReg | SMB380_CONTROL4_ENABLE_ADV_INT_MASK,
SMB380_WRITE_REGISTER);
SMB380_ssp_read();
SMB380_ssp_write(SMB380_CONTROL2, 0, SMB380_READ_REGISTER);
uReg = SMB380_ssp_read();
SMB380_ssp_write(SMB380_CONTROL2, uReg | SMB380_CONTROL2_ANY_MOTION_MASK,
SMB380_WRITE_REGISTER);
SMB380_ssp_read();
SMB380_Unprepare();
restoreIRQ(cpsr);
}
void SMB380_disableAnyMotionLimit(void)
{
unsigned short uReg;
unsigned long cpsr = disableIRQ();
SMB380_Prepare();
SMB380_ssp_write(SMB380_CONTROL2, 0, SMB380_READ_REGISTER);
uReg = SMB380_ssp_read();
SMB380_ssp_write(SMB380_CONTROL2,
uReg & ~SMB380_CONTROL2_ANY_MOTION_MASK,
SMB380_WRITE_REGISTER);
SMB380_ssp_read();
SMB380_ssp_write(SMB380_CONTROL4, 0, SMB380_READ_REGISTER);
uReg = SMB380_ssp_read();
SMB380_ssp_write(SMB380_CONTROL4,
uReg & ~SMB380_CONTROL4_ENABLE_ADV_INT_MASK,
SMB380_WRITE_REGISTER);
SMB380_ssp_read();
SMB380_Unprepare();
restoreIRQ(cpsr);
}
void SMB380_enableNewDataInt(void)
{
unsigned short uReg;
unsigned long cpsr = disableIRQ();
/*
* prevent deep sleep, reason: 400 µs wake-up time is to long for 3kHz
* interrupts
*/
SETBIT(lpm_prevent_sleep, LPM_PREVENT_SLEEP_ACCSENSOR);
SMB380_Prepare();
SMB380_ssp_write(SMB380_CONTROL4, 0, SMB380_READ_REGISTER);
uReg = SMB380_ssp_read();
SMB380_ssp_write(SMB380_CONTROL4, uReg | SMB380_CONTROL4_NEW_DATA_INT_MASK,
SMB380_WRITE_REGISTER);
SMB380_ssp_read();
SMB380_Unprepare();
// measuring temperature dependent internal sample rate of SMB380
tickStart = hwtimer_now();
tickCurrentSamples = 0;
restoreIRQ(cpsr);
}
void SMB380_disableNewDataInt(void)
{
unsigned short uReg;
unsigned long cpsr = disableIRQ();
SMB380_Prepare();
SMB380_ssp_write(SMB380_CONTROL4, 0, SMB380_READ_REGISTER);
uReg = SMB380_ssp_read();
SMB380_ssp_write(SMB380_CONTROL4, uReg & ~SMB380_CONTROL4_NEW_DATA_INT_MASK,
SMB380_WRITE_REGISTER);
SMB380_ssp_read();
SMB380_Unprepare();
/*
* enable deep sleep, reason: 400 µs wake-up time was to long for 3kHz
* interrupts
*/
CLRBIT(lpm_prevent_sleep, LPM_PREVENT_SLEEP_ACCSENSOR);
restoreIRQ(cpsr);
}
void SMB380_resetInterruptFlags(void)
{
unsigned short uReg;
unsigned long cpsr = disableIRQ();
SMB380_Prepare();
SMB380_ssp_write(SMB380_CONTROL1, 0, SMB380_READ_REGISTER);
uReg = SMB380_ssp_read();
SMB380_ssp_write(SMB380_CONTROL1, uReg | SMB380_CONTROL1_RESET_INT_MASK,
SMB380_WRITE_REGISTER);
SMB380_ssp_read();
SMB380_Unprepare();
restoreIRQ(cpsr);
}
void SMB380_enableEEPROM(void)
{
unsigned short uReg;
unsigned long cpsr = disableIRQ();
SMB380_Prepare();
SMB380_ssp_write(SMB380_CONTROL1, 0, SMB380_READ_REGISTER);
uReg = SMB380_ssp_read();
SMB380_ssp_write(SMB380_CONTROL1, uReg | SMB380_CONTROL1_EE_W_MASK,
SMB380_WRITE_REGISTER);
SMB380_ssp_read();
SMB380_Unprepare();
restoreIRQ(cpsr);
}
void SMB380_disableEEPROM(void)
{
unsigned short uReg;
unsigned long cpsr = disableIRQ();
SMB380_Prepare();
SMB380_ssp_write(SMB380_CONTROL1, 0, SMB380_READ_REGISTER);
uReg = SMB380_ssp_read();
SMB380_ssp_write(SMB380_CONTROL1, uReg & ~SMB380_CONTROL1_EE_W_MASK,
SMB380_WRITE_REGISTER);
SMB380_ssp_read();
SMB380_Unprepare();
restoreIRQ(cpsr);
}
/*
* Return offsets from offset registers,
* remove xyz afterwards because it is useless
*/
unsigned char SMB380_readOffset(uint16_t *offset)
{
if (sizeof(offset) < 3) {
return false;
}
unsigned short uReg;
unsigned long cpsr = disableIRQ();
SMB380_Prepare();
SMB380_ssp_write(SMB380_OFFSET_LSB_GAIN_X, 0, SMB380_READ_REGISTER);
uReg = ((SMB380_ssp_read() & SMB380_ACC_LSB_MASK) >> 6);
SMB380_ssp_write(SMB380_OFFSET_MSB_X, 0, SMB380_READ_REGISTER);
uReg |= (SMB380_ssp_read() & SMB380_ACC_MSB_MASK) << 2;
offset[0] = uReg;
printf("Offset X: %u ", uReg);
SMB380_ssp_write(SMB380_OFFSET_LSB_GAIN_Y, 0, SMB380_READ_REGISTER);
uReg = (SMB380_ssp_read() & SMB380_ACC_LSB_MASK) >> 6;
SMB380_ssp_write(SMB380_OFFSET_MSB_Y, 0, SMB380_READ_REGISTER);
uReg |= (SMB380_ssp_read() & SMB380_ACC_MSB_MASK) << 2;
offset[1] = uReg;
printf("Offset Y: %u ", uReg);
SMB380_ssp_write(SMB380_OFFSET_LSB_GAIN_Z, 0, SMB380_READ_REGISTER);
uReg = (SMB380_ssp_read() & SMB380_ACC_LSB_MASK) >> 6;
SMB380_ssp_write(SMB380_OFFSET_MSB_Z, 0, SMB380_READ_REGISTER);
uReg |= (SMB380_ssp_read() & SMB380_ACC_MSB_MASK) << 2;
offset[2] = uReg;
printf("Offset Z: %u \r\n", uReg);
SMB380_Unprepare();
restoreIRQ(cpsr);
return true;
}
unsigned char SMB380_readOffsetTemp(uint16_t *offset)
{
unsigned short uReg;
unsigned long cpsr = disableIRQ();
SMB380_Prepare();
SMB380_ssp_write(SMB380_OFFSET_LSB_GAIN_T, 0, SMB380_READ_REGISTER);
uReg = ((SMB380_ssp_read() & SMB380_ACC_LSB_MASK) >> 6);
SMB380_ssp_write(SMB380_OFFSET_MSB_T, 0, SMB380_READ_REGISTER);
uReg |= (SMB380_ssp_read() & SMB380_ACC_MSB_MASK) << 2;
offset[0] = uReg;
printf("Offset T: %u ", uReg);
SMB380_Unprepare();
restoreIRQ(cpsr);
return true;
}
/*
* EEPROM = 1 if data has to be written in EEPROM and not only in image
*/
void SMB380_writeOffset(uint16_t *offset, uint8_t EEPROM)
{
printf("Writing Offset X: %u Y: %u Z: %u\r\n", offset[0], offset[1], offset[2]);
if (sizeof(offset) >= 3) {
uint16_t eeoffset = 0;
if (EEPROM) {
//create offset if saving to EEPROM is needed
eeoffset = SMB380_EEPROM_OFFSET;
}
unsigned short uReg;
unsigned long cpsr = disableIRQ();
SMB380_Prepare();
//x-Axis
uReg = (offset[0] & 0x03) << 6; //get both LSB Bits
//write them to image or eeprom
SMB380_ssp_write(SMB380_OFFSET_LSB_GAIN_X, 0, SMB380_READ_REGISTER);
uReg |= (SMB380_ssp_read() & 0x3F); //saves gain from same register
SMB380_ssp_write(SMB380_OFFSET_LSB_GAIN_X + eeoffset, (uint8_t)uReg,
SMB380_WRITE_REGISTER); //write them to image or eeprom
SMB380_ssp_read();
hwtimer_wait(HWTIMER_TICKS(50000));
uReg = (offset[0] & 0x3FC) >> 2; //get MSB Bits
SMB380_ssp_write(SMB380_OFFSET_MSB_X + eeoffset, (uint8_t)uReg,
SMB380_WRITE_REGISTER); //write them to image or eeprom
SMB380_ssp_read();
hwtimer_wait(HWTIMER_TICKS(50000));
//y-Axis
uReg = (offset[1] & 0x03) << 6; //get both LSB Bits
SMB380_ssp_write(SMB380_OFFSET_LSB_GAIN_Y, 0, SMB380_READ_REGISTER);
uReg |= (SMB380_ssp_read() & 0x3F); //saves gain from same register
SMB380_ssp_write(SMB380_OFFSET_LSB_GAIN_Y + eeoffset, (uint8_t)uReg,
SMB380_WRITE_REGISTER); //write them to image or eeprom
SMB380_ssp_read();
hwtimer_wait(HWTIMER_TICKS(50000));
uReg = (offset[1] & 0x3FC) >> 2; //get MSB Bits
SMB380_ssp_write(SMB380_OFFSET_MSB_Y + eeoffset, (uint8_t)uReg,
SMB380_WRITE_REGISTER); //write them to image or eeprom
SMB380_ssp_read();
hwtimer_wait(HWTIMER_TICKS(50000));
//z-Axis
uReg = (offset[2] & 0x03) << 6; //get both LSB Bits
SMB380_ssp_write(SMB380_OFFSET_LSB_GAIN_Z, 0,
SMB380_READ_REGISTER); //write them to image or eeprom
uReg |= (SMB380_ssp_read() & 0x3F); //saves gain from same register
SMB380_ssp_write(SMB380_OFFSET_LSB_GAIN_Z + eeoffset, (uint8_t)uReg,
SMB380_WRITE_REGISTER); //write them to image or eeprom
SMB380_ssp_read();
hwtimer_wait(HWTIMER_TICKS(50000));
uReg = (offset[2] & 0x3FC) >> 2; //get MSB Bits
SMB380_ssp_write(SMB380_OFFSET_MSB_Z + eeoffset, (uint8_t)uReg,
SMB380_WRITE_REGISTER); //write them to image or eeprom
SMB380_ssp_read();
hwtimer_wait(HWTIMER_TICKS(50000));
SMB380_Unprepare();
restoreIRQ(cpsr);
}
}
void SMB380_writeOffsetTemp(uint16_t *offset, uint8_t EEPROM)
{
printf("Writing Offset Temp: %u\r\n", offset[0]);
if (sizeof(offset) >= 1) {
uint16_t eeoffset = 0;
if (EEPROM) {
//create offset if saving to EEPROM is needed
eeoffset = SMB380_EEPROM_OFFSET;
}
unsigned short uReg;
unsigned long cpsr = disableIRQ();
SMB380_Prepare();
//T-Axis
uReg = (offset[0] & 0x03) << 6; //get both LSB Bits
SMB380_ssp_write(SMB380_OFFSET_LSB_GAIN_T, 0,
SMB380_READ_REGISTER); //write them to image or eeprom
uReg |= (SMB380_ssp_read() & 0x3F); //saves gain from same register
SMB380_ssp_write(SMB380_OFFSET_LSB_GAIN_T + eeoffset, (uint8_t)uReg,
SMB380_WRITE_REGISTER); //write them to image or eeprom
SMB380_ssp_read();
hwtimer_wait(HWTIMER_TICKS(50000));
uReg = (offset[0] & 0x3FC) >> 2; //get MSB Bits
SMB380_ssp_write(SMB380_OFFSET_MSB_T + eeoffset, (uint8_t)uReg,
SMB380_WRITE_REGISTER); //write them to image or eeprom
SMB380_ssp_read();
hwtimer_wait(HWTIMER_TICKS(50000));
SMB380_Unprepare();
restoreIRQ(cpsr);
}
}
unsigned char SMB380_readGain(uint16_t *gain)
{
if (sizeof(gain) < 3) {
return false;
}
unsigned long cpsr = disableIRQ();
SMB380_Prepare();
//x-gain
SMB380_ssp_write(SMB380_OFFSET_LSB_GAIN_X, 0, SMB380_READ_REGISTER);
gain[0] = (SMB380_ssp_read() & SMB380_OFFSET_GAIN_MASK);
//y-gain
SMB380_ssp_write(SMB380_OFFSET_LSB_GAIN_Y, 0, SMB380_READ_REGISTER);
gain[1] = (SMB380_ssp_read() & SMB380_OFFSET_GAIN_MASK);
//z-gain
SMB380_ssp_write(SMB380_OFFSET_LSB_GAIN_Z, 0, SMB380_READ_REGISTER);
gain[2] = (SMB380_ssp_read() & SMB380_OFFSET_GAIN_MASK);
SMB380_Unprepare();
restoreIRQ(cpsr);
return true;
}
unsigned char SMB380_readGainTemp(uint16_t *gain)
{
if (sizeof(gain) < 1) {
return false;
}
unsigned long cpsr = disableIRQ();
SMB380_Prepare();
//T-gain
SMB380_ssp_write(SMB380_OFFSET_LSB_GAIN_T, 0, SMB380_READ_REGISTER);
gain[0] = (SMB380_ssp_read() & SMB380_OFFSET_GAIN_MASK);
SMB380_Unprepare();
restoreIRQ(cpsr);
return true;
}