1
0
mirror of https://github.com/RIOT-OS/RIOT.git synced 2025-01-15 13:52:45 +01:00
RIOT/cpu/sam0_common/periph/flashpage.c
Benjamin Valentin f375b00ff3 cpu/samd5x: add support for samd5x/same5x MCUs
This adds supoprt for the Atmel SAMD51 & SAME54 SoC.
The SAME5x/SAMD5x is a line of Cortex-M4F MCUs that share peripherals
with the samd2x Cortex-M0+ and saml1x Cortex-M23 parts.
2019-06-06 16:47:11 +02:00

249 lines
7.4 KiB
C

/*
* Copyright (C) 2016 Freie Universität Berlin
*
* This file is subject to the terms and conditions of the GNU Lesser
* General Public License v2.1. See the file LICENSE in the top level
* directory for more details.
*/
/**
* @ingroup cpu_sam0_common
* @ingroup drivers_periph_adc
* @{
*
* @file
* @brief Low-level flash page driver implementation
*
* The sam0 has its flash memory organized in pages and rows, where each row
* consists of 4 pages. While pages are writable one at a time, it is only
* possible to delete a complete row. This implementation abstracts this
* behavior by only writing complete rows at a time, so the FLASHPAGE_SIZE we
* use in RIOT is actually the row size as specified in the datasheet.
*
* @author Hauke Petersen <hauke.petersen@fu-berlin.de>
*
* @}
*/
#include <assert.h>
#include "cpu.h"
#include "periph/flashpage.h"
#define NVMCTRL_PAC_BIT (0x00000002)
#define FLASH_MAIN 0
#define FLASH_RWWEE 1
/**
* @brief NVMCTRL selection macros
*/
#ifdef CPU_FAM_SAML11
#define _NVMCTRL NVMCTRL_SEC
#else
#define _NVMCTRL NVMCTRL
#endif
static inline void wait_nvm_is_ready(void) __attribute__((always_inline));
static inline void wait_nvm_is_ready(void)
{
#if defined(CPU_SAML1X) || defined(CPU_SAMD5X)
while (!_NVMCTRL->STATUS.bit.READY) {}
#else
while (!_NVMCTRL->INTFLAG.bit.READY) {}
#endif
}
static void _unlock(void)
{
/* remove peripheral access lock for the NVMCTRL peripheral */
#ifdef REG_PAC_WRCTRL
PAC->WRCTRL.reg = (PAC_WRCTRL_KEY_CLR | ID_NVMCTRL);
#else
if (PAC1->WPSET.reg & NVMCTRL_PAC_BIT) {
PAC1->WPCLR.reg = NVMCTRL_PAC_BIT;
}
#endif
}
static void _lock(void)
{
/* put peripheral access lock for the NVMCTRL peripheral */
#ifdef REG_PAC_WRCTRL
PAC->WRCTRL.reg = (PAC_WRCTRL_KEY_SET | ID_NVMCTRL);
#else
if (PAC1->WPCLR.reg & NVMCTRL_PAC_BIT) {
PAC1->WPSET.reg = NVMCTRL_PAC_BIT;
}
#endif
}
#ifdef FLASHPAGE_RWWEE_NUMOF
void flashpage_write_raw_internal(void *target_addr, const void *data, size_t len, int flash_type)
#else
void flashpage_write_raw(void *target_addr, const void *data, size_t len)
#endif
{
/* The actual minimal block size for writing is 16B, thus we
* assert we write on multiples and no less of that length.
*/
assert(!(len % FLASHPAGE_RAW_BLOCKSIZE));
/* ensure 4 byte aligned writes */
assert(!(((unsigned)target_addr % FLASHPAGE_RAW_ALIGNMENT) ||
((unsigned)data % FLASHPAGE_RAW_ALIGNMENT)));
/* ensure the length doesn't exceed the actual flash size */
#ifdef FLASHPAGE_RWWEE_NUMOF
if (flash_type == FLASH_RWWEE) {
assert(((unsigned)target_addr + len) <=
(CPU_FLASH_RWWEE_BASE + (FLASHPAGE_SIZE * FLASHPAGE_RWWEE_NUMOF)));
} else {
#endif
assert(((unsigned)target_addr + len) <=
(CPU_FLASH_BASE + (FLASHPAGE_SIZE * FLASHPAGE_NUMOF)));
#ifdef FLASHPAGE_RWWEE_NUMOF
}
#endif
uint32_t *dst = (uint32_t *)target_addr;
const uint32_t *data_addr = data;
/* write 4 bytes in one go */
len /= 4;
_unlock();
#ifdef NVMCTRL_CTRLB_CMDEX_KEY
_NVMCTRL->CTRLB.reg = (NVMCTRL_CTRLB_CMDEX_KEY | NVMCTRL_CTRLB_CMD_PBC);
#else
_NVMCTRL->CTRLA.reg = (NVMCTRL_CTRLA_CMDEX_KEY | NVMCTRL_CTRLA_CMD_PBC);
#endif
wait_nvm_is_ready();
for (unsigned i = 0; i < len; i++) {
*dst++ = *data_addr++;
}
#ifdef FLASHPAGE_RWWEE_NUMOF
if (flash_type == FLASH_RWWEE) {
#ifdef CPU_SAML1X
/* SAML1X use the same Write Page command for both flash memories */
_NVMCTRL->CTRLA.reg = (NVMCTRL_CTRLA_CMDEX_KEY | NVMCTRL_CTRLA_CMD_WP);
#else
_NVMCTRL->CTRLA.reg = (NVMCTRL_CTRLA_CMDEX_KEY | NVMCTRL_CTRLA_CMD_RWWEEWP);
#endif
} else {
#endif
#ifdef NVMCTRL_CTRLB_CMDEX_KEY
_NVMCTRL->CTRLB.reg = (NVMCTRL_CTRLB_CMDEX_KEY | NVMCTRL_CTRLB_CMD_WP);
#else
_NVMCTRL->CTRLA.reg = (NVMCTRL_CTRLA_CMDEX_KEY | NVMCTRL_CTRLA_CMD_WP);
#endif
#ifdef FLASHPAGE_RWWEE_NUMOF
}
#endif
wait_nvm_is_ready();
_lock();
}
#ifdef FLASHPAGE_RWWEE_NUMOF
void flashpage_write_internal(int page, const void *data, int flash_type)
#else
void flashpage_write(int page, const void *data)
#endif
{
uint32_t *page_addr;
#ifdef FLASHPAGE_RWWEE_NUMOF
if (flash_type == FLASH_RWWEE) {
page_addr = (uint32_t *)flashpage_rwwee_addr(page);
} else {
#endif
page_addr = (uint32_t *)flashpage_addr(page);
#ifdef FLASHPAGE_RWWEE_NUMOF
}
#endif
/* erase given page (the ADDR register uses 16-bit addresses) */
_unlock();
#if defined(CPU_SAML1X) || defined(CPU_SAMD5X)
/* Ensure address alignment */
_NVMCTRL->ADDR.reg = (((uint32_t)page_addr) & 0xfffffffe);
#else
_NVMCTRL->ADDR.reg = (((uint32_t)page_addr) >> 1);
#endif
#ifdef FLASHPAGE_RWWEE_NUMOF
if (flash_type == FLASH_RWWEE) {
#ifdef CPU_SAML1X
/* SAML1X use the same Erase command for both flash memories */
_NVMCTRL->CTRLA.reg = (NVMCTRL_CTRLA_CMDEX_KEY | NVMCTRL_CTRLA_CMD_ER);
#else
_NVMCTRL->CTRLA.reg = (NVMCTRL_CTRLA_CMDEX_KEY | NVMCTRL_CTRLA_CMD_RWWEEER);
#endif
} else {
#endif
#ifdef NVMCTRL_CTRLB_CMDEX_KEY
_NVMCTRL->CTRLB.reg = (NVMCTRL_CTRLB_CMDEX_KEY | NVMCTRL_CTRLB_CMD_EB);
#else
_NVMCTRL->CTRLA.reg = (NVMCTRL_CTRLA_CMDEX_KEY | NVMCTRL_CTRLA_CMD_ER);
#endif
#ifdef FLASHPAGE_RWWEE_NUMOF
}
#endif
wait_nvm_is_ready();
_lock();
/* write data to page */
if (data != NULL) {
/* One RIOT page is FLASHPAGE_PAGES_PER_ROW SAM0 flash pages (a row) as
* defined in the file cpu/sam0_common/include/cpu_conf.h, therefore we
* have to split the write into FLASHPAGE_PAGES_PER_ROW raw calls
* underneath, each writing a physical page in chunks of 4 bytes (see
* flashpage_write_raw)
* The erasing is done once as a full row is always reased.
*/
for (unsigned curpage = 0; curpage < FLASHPAGE_PAGES_PER_ROW; curpage++) {
#ifdef FLASHPAGE_RWWEE_NUMOF
flashpage_write_raw_internal(page_addr + (curpage * NVMCTRL_PAGE_SIZE / 4),
(void *) ((uint32_t *) data + (curpage * NVMCTRL_PAGE_SIZE / 4)),
NVMCTRL_PAGE_SIZE, flash_type);
#else
flashpage_write_raw(page_addr + (curpage * NVMCTRL_PAGE_SIZE / 4),
(void *) ((uint32_t *) data + (curpage * NVMCTRL_PAGE_SIZE / 4)),
NVMCTRL_PAGE_SIZE);
#endif
}
}
}
#ifdef FLASHPAGE_RWWEE_NUMOF
/*
* If RWWEE flash is present then we create an additional layer for the write functions
* so we can specify the type (either MAIN or RWWEE) we want to access, keeping the
* standard API unchanged and code for systems without RWWEE at a minimum at the cost
* of some more #defines in the code
*/
void flashpage_write_raw(void *target_addr, const void *data, size_t len)
{
flashpage_write_raw_internal(target_addr, data, len, FLASH_MAIN);
}
void flashpage_write(int page, const void *data)
{
assert((uint32_t)page < FLASHPAGE_NUMOF);
flashpage_write_internal(page, data, FLASH_MAIN);
}
void flashpage_rwwee_write_raw(void *target_addr, const void *data, size_t len)
{
flashpage_write_raw_internal(target_addr, data, len, FLASH_RWWEE);
}
void flashpage_rwwee_write(int page, const void *data)
{
assert((uint32_t)page < FLASHPAGE_RWWEE_NUMOF);
flashpage_write_internal(page, data, FLASH_RWWEE);
}
#endif