1
0
mirror of https://github.com/RIOT-OS/RIOT.git synced 2025-01-15 14:52:45 +01:00
RIOT/cpu/ezr32wg/periph/uart.c

139 lines
3.3 KiB
C

/*
* Copyright (C) 2015 Freie Universität Berlin
*
* This file is subject to the terms and conditions of the GNU Lesser
* General Public License v2.1. See the file LICENSE in the top level
* directory for more details.
*/
/**
* @ingroup cpu_ezr32wg
* @ingroup drivers_periph_uart
* @{
*
* @file
* @brief Low-level UART driver implementation
*
* @author Hauke Petersen <hauke.petersen@fu-berlin.de>
*
* @}
*/
#include "cpu.h"
#include "periph/uart.h"
#include "periph/gpio.h"
/**
* @brief Allocate memory to store the callback functions
*/
static uart_isr_ctx_t isr_ctx[UART_NUMOF];
/**
* @brief Get the pointer to the base register of the given UART device
*
* @param[in] dev UART device identifier
*
* @return base register address
*/
static inline USART_TypeDef *_uart(uart_t dev)
{
return uart_config[dev].dev;
}
int uart_init(uart_t dev, uint32_t baudrate, uart_rx_cb_t rx_cb, void *arg)
{
USART_TypeDef *uart;
/* check if device is valid and get base register address */
if (dev >= UART_NUMOF) {
return UART_NODEV;
}
uart = _uart(dev);
/* save interrupt callback context */
isr_ctx[dev].rx_cb = rx_cb;
isr_ctx[dev].arg = arg;
/* power on the device */
uart_poweron(dev);
/* put device in asynchronous mode @ 16x oversampling (default UART) */
uart->CTRL = 0;
/* configure to default 8N1 configuration */
uart->FRAME = (USART_FRAME_STOPBITS_ONE | USART_FRAME_DATABITS_EIGHT);
/* configure the baudrate - this looks more complicated than it is, we just
* multiply the HFPERCLK with 32 to cut down on rounding error when doing
* the division afterwards... */
uart->CLKDIV = (((CLOCK_HFPERCLK << 5) / (16 * baudrate) - 32) << 3);
/* configure the pins */
gpio_init(uart_config[dev].tx_pin, GPIO_OUT);
if (rx_cb) {
gpio_init(uart_config[dev].rx_pin, GPIO_IN);
uart->ROUTE = ((uart_config[dev].loc << _USART_ROUTE_LOCATION_SHIFT) |
USART_ROUTE_RXPEN | USART_ROUTE_TXPEN);
} else {
uart->ROUTE = ((uart_config[dev].loc << _USART_ROUTE_LOCATION_SHIFT) |
USART_ROUTE_TXPEN);
}
if (rx_cb) {
/* enable RX interrupt */
NVIC_EnableIRQ(uart_config[dev].irq);
NVIC_EnableIRQ(uart_config[dev].irq + 1);
uart->IEN |= USART_IEN_RXDATAV;
/* enable receiver and transmitter */
uart->CMD = USART_CMD_TXEN | USART_CMD_RXEN;
}
else {
uart->CMD = USART_CMD_TXEN;
}
return UART_OK;
}
void uart_write(uart_t dev, const uint8_t *data, size_t len)
{
for (size_t i = 0; i < len; i++) {
while (!(_uart(dev)->STATUS & USART_STATUS_TXBL));
_uart(dev)->TXDATA = data[i];
}
}
void uart_poweron(uart_t dev)
{
CMU->HFPERCLKEN0 |= (1 << uart_config[dev].cmu);
}
void uart_poweroff(uart_t dev)
{
CMU->HFPERCLKEN0 &= ~(1 << uart_config[dev].cmu);
}
static inline void rx_irq(int dev)
{
if (_uart(dev)->IF & USART_IF_RXDATAV) {
uint8_t data = (uint8_t)_uart(dev)->RXDATA;
isr_ctx[dev].rx_cb(isr_ctx[dev].arg, data);
}
cortexm_isr_end();
}
#ifdef UART_0_ISR_RX
void UART_0_ISR_RX(void)
{
rx_irq(0);
}
#endif
#ifdef UART_1_ISR_RX
void UART_1_ISR_RX(void)
{
rx_irq(1);
}
#endif
#ifdef UART_2_ISR_RX
void UART_2_ISR_RX(void)
{
rx_irq(2);
}
#endif