1
0
mirror of https://github.com/RIOT-OS/RIOT.git synced 2025-01-18 03:53:04 +01:00
RIOT/cpu/sam0_common/periph/rtc_rtt.c
Juergen Fitschen 268bdfec29 sam0/rtc_rtt: don't block until set_alarm has been propagated to periph
rtc_set_alarm() / rtt_set_alarm() are heavily used by ztimer during ISR. This will reduce time spent during ISR drastically. We trust that the peripheral is able to propagate the alarm asynchronously.
2022-11-16 17:02:19 +01:00

828 lines
20 KiB
C

/*
* Copyright (C) 2015 Kaspar Schleiser <kaspar@schleiser.de>
* 2015 FreshTemp, LLC.
* 2022 SSV Software Systems GmbH
*
* This file is subject to the terms and conditions of the GNU Lesser
* General Public License v2.1. See the file LICENSE in the top level
* directory for more details.
*/
/**
* @ingroup cpu_sam0_common
* @ingroup drivers_periph_rtc
* @ingroup drivers_periph_rtt
* @{
*
* @file rtc_rtt.c
* @brief Low-level RTC/RTT driver implementation
*
* @author Kaspar Schleiser <kaspar@schleiser.de>
* @author Baptiste Clenet <bapclenet@gmail.com>
* @author FWX <FWX@dialine.fr>
* @author Benjamin Valentin <benjamin.valentin@ml-pa.com>
* @author Juergen Fitschen <me@jue.yt>
*
* @}
*/
#include <stdint.h>
#include <string.h>
#include "pm_layered.h"
#include "periph/rtc.h"
#include "periph/rtt.h"
#include "periph_conf.h"
#define ENABLE_DEBUG 0
#include "debug.h"
/* SAML21 rev B needs an extra bit, which in rev A defaults to 1, but isn't
* visible. Thus define it here. */
#ifndef RTC_MODE0_CTRLA_COUNTSYNC
#define RTC_MODE0_CTRLA_COUNTSYNC_Pos 15
#define RTC_MODE0_CTRLA_COUNTSYNC (0x1ul << RTC_MODE0_CTRLA_COUNTSYNC_Pos)
#endif
#ifndef RTC_MODE2_CTRLA_CLOCKSYNC
#define RTC_MODE2_CTRLA_CLOCKSYNC_Pos 15
#define RTC_MODE2_CTRLA_CLOCKSYNC (0x1ul << RTC_MODE2_CTRLA_CLOCKSYNC_Pos)
#endif
#ifdef REG_RTC_MODE0_CTRLA
#define RTC_MODE0_PRESCALER \
(__builtin_ctz(2 * RTT_CLOCK_FREQUENCY / RTT_FREQUENCY) << \
RTC_MODE0_CTRLA_PRESCALER_Pos)
#else
#define RTC_MODE0_PRESCALER \
(__builtin_ctz(RTT_CLOCK_FREQUENCY / RTT_FREQUENCY) << \
RTC_MODE0_CTRL_PRESCALER_Pos)
#endif
typedef struct {
rtc_alarm_cb_t cb; /**< callback called from RTC interrupt */
void *arg; /**< argument passed to the callback */
} rtc_state_t;
static rtc_state_t alarm_cb;
static rtc_state_t overflow_cb;
#if (IS_ACTIVE(MODULE_PERIPH_RTC) || IS_ACTIVE(MODULE_PERIPH_RTT)) && \
IS_ACTIVE(MODULE_PM_LAYERED) && defined(SAM0_RTCRTT_PM_BLOCK)
static bool _pm_alarm = false;
#if IS_ACTIVE(MODULE_PERIPH_RTT)
static bool _pm_overflow = false;
#endif
static inline void _pm_block(bool *flag)
{
if (!*flag) {
pm_block(SAM0_RTCRTT_PM_BLOCK);
*flag = true;
}
}
static inline void _pm_unblock(bool *flag)
{
if (*flag) {
pm_unblock(SAM0_RTCRTT_PM_BLOCK);
*flag = false;
}
}
#else
/* Use empty stubs if pm is disabled */
#define _pm_block(x)
#define _pm_unblock(x)
#endif
#if IS_ACTIVE(MODULE_PERIPH_RTC)
/* At 1Hz, RTC goes till 63 years (2^5, see 17.8.22 in datasheet)
* struct tm younts the year since 1900, use the difference to RIOT_EPOCH
* as an offset so the user can set years in RIOT_EPOCH + 63
*/
static const uint16_t reference_year = RIOT_EPOCH - 1900;
#endif
static void _wait_syncbusy(void)
{
if (IS_ACTIVE(MODULE_PERIPH_RTT)) {
#ifdef REG_RTC_MODE0_SYNCBUSY
while (RTC->MODE0.SYNCBUSY.reg) {}
#else
while (RTC->MODE0.STATUS.bit.SYNCBUSY) {}
#endif
} else {
#ifdef REG_RTC_MODE2_SYNCBUSY
while (RTC->MODE2.SYNCBUSY.reg) {}
#else
while (RTC->MODE2.STATUS.bit.SYNCBUSY) {}
#endif
}
}
#if defined(MODULE_PERIPH_RTC) || defined(MODULE_PERIPH_RTT)
static void _read_req(void)
{
#ifdef RTC_READREQ_RREQ
RTC->MODE0.READREQ.reg = RTC_READREQ_RREQ;
#endif
_wait_syncbusy();
}
#endif
static void _poweron(void)
{
#ifdef MCLK
MCLK->APBAMASK.reg |= MCLK_APBAMASK_RTC;
#else
PM->APBAMASK.reg |= PM_APBAMASK_RTC;
#endif
}
__attribute__((unused))
static bool _power_is_on(void)
{
#ifdef MCLK
return MCLK->APBAMASK.reg & MCLK_APBAMASK_RTC;
#else
return PM->APBAMASK.reg & PM_APBAMASK_RTC;
#endif
}
__attribute__((unused))
static void _poweroff(void)
{
#ifdef MCLK
MCLK->APBAMASK.reg &= ~MCLK_APBAMASK_RTC;
#else
PM->APBAMASK.reg &= ~PM_APBAMASK_RTC;
#endif
}
static inline void _rtc_set_enabled(bool on)
{
#ifdef REG_RTC_MODE2_CTRLA
RTC->MODE2.CTRLA.bit.ENABLE = on;
#else
RTC->MODE2.CTRL.bit.ENABLE = on;
#endif
_wait_syncbusy();
}
static inline void _rtt_reset(void)
{
#ifdef RTC_MODE0_CTRL_SWRST
RTC->MODE0.CTRL.reg = RTC_MODE0_CTRL_SWRST;
while (RTC->MODE0.CTRL.bit.SWRST) {}
#else
RTC->MODE0.CTRLA.reg = RTC_MODE2_CTRLA_SWRST;
while (RTC->MODE0.CTRLA.bit.SWRST) {}
#endif
}
#ifdef CPU_COMMON_SAMD21
#ifdef MODULE_PERIPH_RTC
static void _rtc_clock_setup(void)
{
/* Use 1024 Hz GCLK */
GCLK->CLKCTRL.reg = GCLK_CLKCTRL_CLKEN
| GCLK_CLKCTRL_GEN(SAM0_GCLK_1KHZ)
| GCLK_CLKCTRL_ID_RTC;
while (GCLK->STATUS.bit.SYNCBUSY) {}
}
#endif /* MODULE_PERIPH_RTC */
#ifdef MODULE_PERIPH_RTT
static void _rtt_clock_setup(void)
{
/* Use 32 kHz GCLK */
GCLK->CLKCTRL.reg = GCLK_CLKCTRL_CLKEN
| GCLK_CLKCTRL_GEN(SAM0_GCLK_32KHZ)
| GCLK_CLKCTRL_ID_RTC;
while (GCLK->STATUS.bit.SYNCBUSY) {}
}
#endif /* MODULE_PERIPH_RTT */
#else /* CPU_COMMON_SAMD21 - Clock Setup */
#ifdef MODULE_PERIPH_RTC
static void _rtc_clock_setup(void)
{
/* RTC source clock is external oscillator at 1kHz */
#if EXTERNAL_OSC32_SOURCE
OSC32KCTRL->XOSC32K.bit.EN1K = 1;
OSC32KCTRL->RTCCTRL.reg = OSC32KCTRL_RTCCTRL_RTCSEL_XOSC1K;
/* RTC uses internal 32,768KHz Oscillator */
#elif INTERNAL_OSC32_SOURCE
OSC32KCTRL->OSC32K.bit.EN1K = 1;
OSC32KCTRL->RTCCTRL.reg = OSC32KCTRL_RTCCTRL_RTCSEL_OSC1K;
/* RTC uses Ultra Low Power internal 32,768KHz Oscillator */
#elif ULTRA_LOW_POWER_INTERNAL_OSC_SOURCE
OSC32KCTRL->RTCCTRL.reg = OSC32KCTRL_RTCCTRL_RTCSEL_ULP1K;
#else
#error "No clock source for RTC selected. "
#endif
}
#endif /* MODULE_PERIPH_RTC */
#if defined(MODULE_PERIPH_RTT) || RTC_NUM_OF_TAMPERS
static void _rtt_clock_setup(void)
{
/* RTC source clock is external oscillator at 32kHz */
#if EXTERNAL_OSC32_SOURCE
OSC32KCTRL->XOSC32K.bit.EN32K = 1;
OSC32KCTRL->RTCCTRL.reg = OSC32KCTRL_RTCCTRL_RTCSEL_XOSC32K;
/* RTC uses internal 32,768KHz Oscillator */
#elif INTERNAL_OSC32_SOURCE
OSC32KCTRL->RTCCTRL.reg = OSC32KCTRL_RTCCTRL_RTCSEL_OSC32K;
/* RTC uses Ultra Low Power internal 32,768KHz Oscillator */
#elif ULTRA_LOW_POWER_INTERNAL_OSC_SOURCE
OSC32KCTRL->RTCCTRL.reg = OSC32KCTRL_RTCCTRL_RTCSEL_ULP32K;
#else
#error "No clock source for RTT selected. "
#endif
}
#endif /* MODULE_PERIPH_RTT */
#endif /* !CPU_COMMON_SAMD21 - Clock Setup */
#ifdef MODULE_PERIPH_RTC_MEM
/* first two GP registers are shared with COMP[0] / ALARM[0] */
#ifdef RTC_MODE2_CTRLB_GP2EN
#define RTC_GPR_START (2)
#else
#define RTC_GPR_START (0)
#endif
#define RTC_GPR_NUM_AVAIL (RTC_GPR_NUM - RTC_GPR_START)
#define RTC_MEM_SIZE (RTC_GPR_NUM_AVAIL * sizeof(uint32_t))
size_t rtc_mem_size(void)
{
return RTC_MEM_SIZE;
}
static void _read_gp(uint32_t *dst)
{
for (unsigned i = RTC_GPR_START; i < RTC_GPR_NUM; ++i) {
dst[i - RTC_GPR_START] = RTC->MODE0.GP[i].reg;
}
}
static void _write_gp(const uint32_t *src)
{
for (unsigned i = RTC_GPR_START; i < RTC_GPR_NUM; ++i) {
_wait_syncbusy();
RTC->MODE0.GP[i].reg = src[i - RTC_GPR_START];
}
}
void rtc_mem_read(unsigned offset, void *data, size_t len)
{
uint32_t tmp[RTC_GPR_NUM_AVAIL];
if (offset + len > RTC_MEM_SIZE) {
assert(0);
return;
}
_read_gp(tmp);
memcpy(data, ((uint8_t *)tmp) + offset, len);
}
void rtc_mem_write(unsigned offset, void *data, size_t len)
{
uint32_t tmp[RTC_GPR_NUM_AVAIL];
if (offset + len > RTC_MEM_SIZE) {
assert(0);
return;
}
_read_gp(tmp);
memcpy(((uint8_t *)tmp) + offset, data, len);
_write_gp(tmp);
}
#endif /* MODULE_PERIPH_RTC_MEM */
#ifdef MODULE_PERIPH_RTC
static void _rtc_init(void)
{
#ifdef REG_RTC_MODE2_CTRLA
/* skip reset if already in RTC mode */
if (RTC->MODE2.CTRLA.bit.MODE == RTC_MODE2_CTRLA_MODE_CLOCK_Val) {
return;
}
_rtt_reset();
/* RTC config with RTC_MODE2_CTRL_CLKREP = 0 (24h) */
RTC->MODE2.CTRLA.reg = RTC_MODE2_CTRLA_PRESCALER_DIV1024 /* CLK_RTC_CNT = 1KHz / 1024 -> 1Hz */
| RTC_MODE2_CTRLA_CLOCKSYNC /* Clock Read Synchronization Enable */
| RTC_MODE2_CTRLA_MODE_CLOCK;
#ifdef RTC_MODE2_CTRLB_GP2EN
/* RTC driver does not use COMP[1] or ALARM[1] */
/* Use second set of Compare registers as general purpose register */
RTC->MODE2.CTRLB.reg = RTC_MODE2_CTRLB_GP2EN;
#endif
#else
if (RTC->MODE2.CTRL.bit.MODE == RTC_MODE2_CTRL_MODE_CLOCK_Val) {
return;
}
_rtt_reset();
RTC->MODE2.CTRL.reg = RTC_MODE2_CTRL_PRESCALER_DIV1024
| RTC_MODE2_CTRL_MODE_CLOCK;
#endif
}
void rtc_init(void)
{
/* clear previously set pm mode blockers */
_pm_unblock(&_pm_alarm);
_poweroff();
_rtc_clock_setup();
_poweron();
_rtc_init();
/* disable all interrupt sources */
RTC->MODE2.INTENCLR.reg = RTC_MODE2_INTENCLR_MASK;
/* Clear interrupt flags */
RTC->MODE2.INTFLAG.reg = RTC_MODE2_INTFLAG_ALARM0;
_rtc_set_enabled(1);
NVIC_EnableIRQ(RTC_IRQn);
}
#endif /* MODULE_PERIPH_RTC */
#ifdef MODULE_PERIPH_RTT
void rtt_init(void)
{
/* clear previously set pm mode blockers */
_pm_unblock(&_pm_alarm);
_pm_unblock(&_pm_overflow);
_rtt_clock_setup();
_poweron();
#ifdef MODULE_PERIPH_RTC_MEM
uint32_t backup[RTC_GPR_NUM_AVAIL];
_read_gp(backup);
#endif
_rtt_reset();
#ifdef MODULE_PERIPH_RTC_MEM
#ifdef RTC_MODE2_CTRLB_GP2EN
/* RTC driver does not use COMP[1] or ALARM[1] */
/* Use second set of Compare registers as general purpose register */
RTC->MODE2.CTRLB.reg = RTC_MODE2_CTRLB_GP2EN;
#endif
_write_gp(backup);
#endif /* MODULE_PERIPH_RTC_MEM */
/* set 32bit counting mode & enable the RTC */
#ifdef REG_RTC_MODE0_CTRLA
RTC->MODE0.CTRLA.reg = RTC_MODE0_CTRLA_MODE(0)
| RTC_MODE0_CTRLA_ENABLE
| RTC_MODE0_CTRLA_COUNTSYNC
| RTC_MODE0_PRESCALER;
#else
RTC->MODE0.CTRL.reg = RTC_MODE0_CTRL_MODE(0)
| RTC_MODE0_CTRL_ENABLE
| RTC_MODE0_PRESCALER;
#endif
_wait_syncbusy();
/* initially clear flag */
RTC->MODE0.INTFLAG.reg = RTC_MODE0_INTFLAG_CMP0
| RTC_MODE0_INTFLAG_OVF;
NVIC_EnableIRQ(RTC_IRQn);
}
#endif /* MODULE_PERIPH_RTT */
#if RTC_NUM_OF_TAMPERS
static rtc_state_t tamper_cb;
static uint32_t tampctr;
/* check if pin is a RTC tamper pin */
static int _rtc_pin(gpio_t pin)
{
for (unsigned i = 0; i < ARRAY_SIZE(rtc_tamper_pins); ++i) {
if (rtc_tamper_pins[i] == pin) {
return i;
}
}
return -1;
}
static void _set_tampctrl(uint32_t reg)
{
_rtc_set_enabled(0);
RTC->MODE0.TAMPCTRL.reg = reg;
_rtc_set_enabled(1);
}
void rtc_tamper_init(void)
{
DEBUG("tamper init\n");
/* configure RTC clock only if it is not already configured */
if (!IS_ACTIVE(MODULE_PERIPH_RTC) &&
!IS_ACTIVE(MODULE_PERIPH_RTT)) {
if (!_power_is_on()) {
_rtt_clock_setup();
_poweron();
}
/* disable all interrupt sources */
RTC->MODE0.INTENCLR.reg = RTC_MODE0_INTENCLR_MASK;
}
/* disable old tamper events */
_set_tampctrl(0);
NVIC_EnableIRQ(RTC_IRQn);
}
int rtc_tamper_register(gpio_t pin, gpio_flank_t flank)
{
int in = _rtc_pin(pin);
if (in < 0) {
return -1;
}
tampctr |= RTC_TAMPCTRL_IN0ACT_WAKE << (2 * in);
if (flank == GPIO_RISING) {
tampctr |= RTC_TAMPCTRL_TAMLVL0 << in;
} else if (flank == GPIO_FALLING) {
tampctr &= ~(RTC_TAMPCTRL_TAMLVL0 << in);
}
return 0;
}
void rtc_tamper_enable(void)
{
DEBUG("enable tamper\n");
/* clear tamper id */
RTC->MODE0.TAMPID.reg = 0x1F;
/* write TAMPCTRL register */
_set_tampctrl(tampctr);
/* work around errata 2.17.4:
* ignore the first tamper event on the rising edge */
if (RTC->MODE0.TAMPCTRL.reg & RTC_TAMPCTRL_TAMLVL_Msk) {
/* If an RTC alarm happened before, the spurious tamper
* event is sometimes not generated.
* Tamper event must happen within one RTC clock period. */
unsigned timeout = CLOCK_CORECLOCK / 32768;
/* prevent RTC interrupt from triggering */
NVIC_DisableIRQ(RTC_IRQn);
/* enable tamper detect as wake-up source */
RTC->MODE0.INTENSET.bit.TAMPER = 1;
/* wait for first tamper event */
while (!RTC->MODE0.INTFLAG.bit.TAMPER && --timeout) {}
/* clear tamper flag flag */
RTC->MODE0.INTFLAG.reg = RTC_MODE0_INTFLAG_TAMPER;
/* restore RTC IRQ */
NVIC_EnableIRQ(RTC_IRQn);
} else {
/* no spurious event on falling edge */
RTC->MODE0.INTENSET.bit.TAMPER = 1;
}
DEBUG("tamper enabled\n");
}
uint8_t rtc_get_tamper_event(void)
{
uint32_t ret = RTC->MODE0.TAMPID.reg;
/* clear tamper event */
RTC->MODE0.INTFLAG.reg = RTC_MODE0_INTFLAG_TAMPER;
RTC->MODE0.TAMPID.reg = ret;
return ret & RTC_TAMPID_TAMPID_Msk;
}
uint8_t rtc_tamper_pin_mask(gpio_t pin)
{
int idx = _rtc_pin(pin);
if (idx < 0) {
return 0;
}
return 1 << idx;
}
#endif /* RTC_NUM_OF_TAMPERS */
#ifdef MODULE_PERIPH_RTC
int rtc_get_alarm(struct tm *time)
{
RTC_MODE2_ALARM_Type alarm;
/* Read alarm register in one time */
alarm.reg = RTC->MODE2.Mode2Alarm[0].ALARM.reg;
time->tm_year = alarm.bit.YEAR + reference_year;
if ((time->tm_year < reference_year) ||
(time->tm_year > (reference_year + 63))) {
return -1;
}
time->tm_mon = alarm.bit.MONTH - 1;
time->tm_mday = alarm.bit.DAY;
time->tm_hour = alarm.bit.HOUR;
time->tm_min = alarm.bit.MINUTE;
time->tm_sec = alarm.bit.SECOND;
return 0;
}
int rtc_get_time(struct tm *time)
{
RTC_MODE2_CLOCK_Type clock;
/* Read register in one time */
_read_req();
clock.reg = RTC->MODE2.CLOCK.reg;
time->tm_year = clock.bit.YEAR + reference_year;
if ((time->tm_year < reference_year) ||
(time->tm_year > (reference_year + 63))) {
return -1;
}
time->tm_mon = clock.bit.MONTH - 1;
time->tm_mday = clock.bit.DAY;
time->tm_hour = clock.bit.HOUR;
time->tm_min = clock.bit.MINUTE;
time->tm_sec = clock.bit.SECOND;
return 0;
}
static void _rtc_clear_alarm(void)
{
/* disable alarm interrupt */
RTC->MODE2.INTENCLR.reg = RTC_MODE2_INTENCLR_ALARM0;
}
void rtc_clear_alarm(void)
{
_rtc_clear_alarm();
_pm_unblock(&_pm_alarm);
}
int rtc_set_alarm(struct tm *time, rtc_alarm_cb_t cb, void *arg)
{
/* prevent old alarm from ringing */
_rtc_clear_alarm();
/* normalize input */
rtc_tm_normalize(time);
if ((time->tm_year < reference_year) ||
(time->tm_year > (reference_year + 63))) {
return -2;
}
/* make sure that preceding changes have been applied */
_wait_syncbusy();
RTC->MODE2.Mode2Alarm[0].ALARM.reg = RTC_MODE2_ALARM_YEAR(time->tm_year - reference_year)
| RTC_MODE2_ALARM_MONTH(time->tm_mon + 1)
| RTC_MODE2_ALARM_DAY(time->tm_mday)
| RTC_MODE2_ALARM_HOUR(time->tm_hour)
| RTC_MODE2_ALARM_MINUTE(time->tm_min)
| RTC_MODE2_ALARM_SECOND(time->tm_sec);
RTC->MODE2.Mode2Alarm[0].MASK.reg = RTC_MODE2_MASK_SEL(6);
/* Enable IRQ */
alarm_cb.cb = cb;
alarm_cb.arg = arg;
/* enable alarm interrupt and clear flag */
RTC->MODE2.INTFLAG.reg = RTC_MODE2_INTFLAG_ALARM0;
RTC->MODE2.INTENSET.reg = RTC_MODE2_INTENSET_ALARM0;
/* block power mode if callback function is present */
if (alarm_cb.cb) {
_pm_block(&_pm_alarm);
}
return 0;
}
int rtc_set_time(struct tm *time)
{
/* normalize input */
rtc_tm_normalize(time);
if ((time->tm_year < reference_year) ||
(time->tm_year > reference_year + 63)) {
return -1;
}
else {
RTC->MODE2.CLOCK.reg = RTC_MODE2_CLOCK_YEAR(time->tm_year - reference_year)
| RTC_MODE2_CLOCK_MONTH(time->tm_mon + 1)
| RTC_MODE2_CLOCK_DAY(time->tm_mday)
| RTC_MODE2_CLOCK_HOUR(time->tm_hour)
| RTC_MODE2_CLOCK_MINUTE(time->tm_min)
| RTC_MODE2_CLOCK_SECOND(time->tm_sec);
}
_wait_syncbusy();
return 0;
}
void rtc_poweron(void)
{
_poweron();
}
void rtc_poweroff(void)
{
_poweroff();
}
#endif /* MODULE_PERIPH_RTC */
#ifdef MODULE_PERIPH_RTT
void rtt_set_overflow_cb(rtt_cb_t cb, void *arg)
{
/* clear overflow cb to avoid race while assigning */
rtt_clear_overflow_cb();
/* set callback variables */
overflow_cb.cb = cb;
overflow_cb.arg = arg;
/* enable overflow interrupt */
RTC->MODE0.INTENSET.reg = RTC_MODE0_INTENSET_OVF;
/* block power mode if callback function is present */
if (overflow_cb.cb) {
_pm_block(&_pm_overflow);
}
}
void rtt_clear_overflow_cb(void)
{
/* disable overflow interrupt */
RTC->MODE0.INTENCLR.reg = RTC_MODE0_INTENCLR_OVF;
_pm_unblock(&_pm_overflow);
}
uint32_t rtt_get_counter(void)
{
_read_req();
return RTC->MODE0.COUNT.reg;
}
void rtt_set_counter(uint32_t count)
{
RTC->MODE0.COUNT.reg = count;
_wait_syncbusy();
}
uint32_t rtt_get_alarm(void)
{
_wait_syncbusy();
return RTC->MODE0.COMP[0].reg;
}
static void _rtt_clear_alarm(void)
{
/* disable compare interrupt */
RTC->MODE0.INTENCLR.reg = RTC_MODE0_INTENCLR_CMP0;
}
void rtt_clear_alarm(void)
{
_rtt_clear_alarm();
_pm_unblock(&_pm_alarm);
}
void rtt_set_alarm(uint32_t alarm, rtt_cb_t cb, void *arg)
{
/* disable interrupt to avoid race */
_rtt_clear_alarm();
/* setup callback */
alarm_cb.cb = cb;
alarm_cb.arg = arg;
/* make sure that preceding changes have been applied */
_wait_syncbusy();
/* set COMP register */
RTC->MODE0.COMP[0].reg = alarm;
/* enable compare interrupt and clear flag */
RTC->MODE0.INTFLAG.reg = RTC_MODE0_INTFLAG_CMP0;
RTC->MODE0.INTENSET.reg = RTC_MODE0_INTENSET_CMP0;
/* block power mode if callback function is present */
if (alarm_cb.cb) {
_pm_block(&_pm_alarm);
}
}
void rtt_poweron(void)
{
_poweron();
}
void rtt_poweroff(void)
{
_poweroff();
}
#endif /* MODULE_PERIPH_RTT */
static void _isr_rtc(void)
{
if (!IS_ACTIVE(MODULE_PERIPH_RTC)) {
return;
}
if (RTC->MODE2.INTFLAG.bit.ALARM0) {
/* clear flag */
RTC->MODE2.INTFLAG.reg = RTC_MODE2_INTFLAG_ALARM0;
if (alarm_cb.cb) {
alarm_cb.cb(alarm_cb.arg);
}
}
}
static void _isr_rtt(void)
{
if (!IS_ACTIVE(MODULE_PERIPH_RTT)) {
return;
}
if (RTC->MODE0.INTFLAG.bit.OVF) {
RTC->MODE0.INTFLAG.reg = RTC_MODE0_INTFLAG_OVF;
if (overflow_cb.cb) {
overflow_cb.cb(overflow_cb.arg);
}
}
if (RTC->MODE0.INTFLAG.bit.CMP0) {
/* clear flag */
RTC->MODE0.INTFLAG.reg = RTC_MODE0_INTFLAG_CMP0;
/* disable interrupt */
RTC->MODE0.INTENCLR.reg = RTC_MODE0_INTENCLR_CMP0;
if (alarm_cb.cb) {
_pm_unblock(&_pm_alarm);
alarm_cb.cb(alarm_cb.arg);
}
}
}
static void _isr_tamper(void)
{
#ifdef RTC_MODE0_INTFLAG_TAMPER
if (RTC->MODE0.INTFLAG.bit.TAMPER) {
RTC->MODE0.INTFLAG.reg = RTC_MODE0_INTFLAG_TAMPER;
if (tamper_cb.cb) {
tamper_cb.cb(tamper_cb.arg);
}
}
#endif
}
void isr_rtc(void)
{
_isr_rtc();
_isr_rtt();
_isr_tamper();
cortexm_isr_end();
}