1
0
mirror of https://github.com/RIOT-OS/RIOT.git synced 2024-12-29 04:50:03 +01:00
RIOT/tests/driver_sps30/main.c
2020-08-25 16:20:18 +02:00

187 lines
5.8 KiB
C

/*
* Copyright (C) 2020 HAW Hamburg
*
* This file is subject to the terms and conditions of the GNU Lesser
* General Public License v2.1. See the file LICENSE in the top level
* directory for more details.
*/
/**
* @ingroup tests
* @{
* @file
* @brief Test application for the Sensirion SPS30 device driver
* @author Michel Rottleuthner <michel.rottleuthner@haw-hamburg.de>
* @}
*/
#include <stdio.h>
#include <string.h>
#include "xtimer.h"
#include "sps30.h"
#include "sps30_params.h"
#define TEST_START_DELAY_S (2U)
#define SENSOR_RESET_DELAY_S (10U)
#define SENSOR_STARTUP_DELAY_S (10U)
#define SENSOR_SLEEP_WAKE_DELAY_S (5U)
#define POLL_FOR_READY_S (1U)
#define NUM_OF_MEASUREMENTS (10U)
#define TYPE_MC_STR "MC PM"
#define TYPE_NC_STR "NC PM"
#define TYPE_TPS_STR "TPS"
#define MC_UNIT_STR "[µg/m³]"
#define NC_UNIT_STR "[#/cm³]"
#define TPS_UNIT_STR "[µm]"
/* prints the result of an operation and returns true if an error occurred */
static bool _print_error(const char *msg, sps30_error_code_t ec)
{
printf("sps30_%s: [%s]\n", msg, (ec == SPS30_OK) ? "OK" :
(ec == SPS30_CRC_ERROR ? "CRC_ERROR"
: "I2C_ERROR"));
return ec != SPS30_OK;
}
static void _print_val_row(char *typ1, char *typ2, char *unit, float val)
{
printf("| %-5s %4s:%3"PRIu32".%03"PRIu32" %-8s |\n", typ1, typ2,
(uint32_t)val, ((uint32_t)((val + 0.0005) * 1000)) % 1000, unit);
}
int main(void)
{
sps30_t dev;
sps30_data_t data;
sps30_error_code_t ec;
char str[SPS30_SER_ART_LEN];
uint32_t ci = 0; /* clean interval */
uint32_t nci = 0; /* new clean interval */
bool error = false;
unsigned cnt = NUM_OF_MEASUREMENTS;
xtimer_sleep(TEST_START_DELAY_S);
puts("SPS30 test application\n");
ec = sps30_init(&dev, &sps30_params[0]);
error |= _print_error("init", ec);
ec = sps30_read_article_code(&dev, str, sizeof(str));
if (ec == SPS30_OK) {
printf("Article code: %s\n", str);
} else {
error |= _print_error("read_article_code", ec);
}
ec = sps30_read_serial_number(&dev, str, sizeof(str));
if (ec == SPS30_OK) {
printf("Serial: %s\n", str);
} else {
error |= _print_error("read_serial_number", ec);
}
ec = sps30_start_fan_clean(&dev);
error |= _print_error("start_fan_clean", ec);
/* wait long enough for the fan clean to be done and the fan to settle */
xtimer_sleep(2 * SPS30_FAN_CLEAN_S);
/* read the currently set value from the sensor */
ec = sps30_read_ac_interval(&dev, &ci);
error |= _print_error("read_ac_interval", ec);
nci = ci + 1;
ec = sps30_write_ac_interval(&dev, nci);
error |= _print_error("write_ac_interval", ec);
/* resetting the sensor so the updated value can be read */
ec = sps30_reset(&dev);
error |= _print_error("reset", ec);
xtimer_sleep(SENSOR_RESET_DELAY_S);
/* Put the sensor in sleep */
ec = sps30_sleep(&dev);
error |= _print_error("sleep", ec);
xtimer_sleep(SENSOR_SLEEP_WAKE_DELAY_S);
/* Wake-up the sensor */
ec = sps30_wakeup(&dev);
error |= _print_error("wake-up", ec);
xtimer_sleep(SENSOR_SLEEP_WAKE_DELAY_S);
/* start the sensor again again... */
ec = sps30_start_measurement(&dev);
error |= _print_error("start_measurement", ec);
xtimer_sleep(SENSOR_STARTUP_DELAY_S);
ec = sps30_read_ac_interval(&dev, &ci);
error |= _print_error("read_ac_interval", ec);
if (ci != nci) {
printf("ERROR: the auto-clean interval was not updated properly! (%"
PRIu32" != %"PRIu32")\n", ci, nci);
}
/* restore the default auto-clean cycle */
ec = sps30_write_ac_interval(&dev, SPS30_DEFAULT_ACI_S);
error |= _print_error("write_ac_interval", ec);
while (cnt) {
int err_code;
bool ready = sps30_data_ready(&dev, &err_code);
if (!ready) {
if (err_code != SPS30_OK) {
error |= _print_error("data_ready", err_code);
cnt--; /* if errors happen, stop after NUM_OF_MEASUREMENTS */
}
/* try again after some time */
xtimer_sleep(POLL_FOR_READY_S);
continue;
}
ec = sps30_read_measurement(&dev, &data);
if (ec == SPS30_OK) {
puts("\nv==== SPS30 measurements ====v");
_print_val_row(TYPE_MC_STR, "1.0", MC_UNIT_STR, data.mc_pm1);
_print_val_row(TYPE_MC_STR, "2.5", MC_UNIT_STR, data.mc_pm2_5);
_print_val_row(TYPE_MC_STR, "4.0", MC_UNIT_STR, data.mc_pm4);
_print_val_row(TYPE_MC_STR, "10.0", MC_UNIT_STR, data.mc_pm10);
_print_val_row(TYPE_NC_STR, "0.5", NC_UNIT_STR, data.nc_pm0_5);
_print_val_row(TYPE_NC_STR, "1.0", NC_UNIT_STR, data.nc_pm1);
_print_val_row(TYPE_NC_STR, "2.5", NC_UNIT_STR, data.nc_pm2_5);
_print_val_row(TYPE_NC_STR, "4.0", NC_UNIT_STR, data.nc_pm4);
_print_val_row(TYPE_NC_STR, "10.0", NC_UNIT_STR, data.nc_pm10);
_print_val_row(TYPE_TPS_STR, "", TPS_UNIT_STR, data.ps);
puts("+----------------------------+");
puts("| MC: Mass Concentration |");
puts("| NC: Number Concentration |");
puts("| TPS: Typical Particle Size |");
printf("^========= %2u / %2u ==========^\n\n",
NUM_OF_MEASUREMENTS - cnt + 1, NUM_OF_MEASUREMENTS);
} else {
error |= _print_error("read_measurement", ec);
}
cnt--;
}
ec = sps30_stop_measurement(&dev);
error |= _print_error("stop_measurement", ec);
if (error) {
puts("sps30 test: [FAILED]");
}
else {
puts("sps30 test: [SUCCESS]");
}
return 0;
}