1
0
mirror of https://github.com/RIOT-OS/RIOT.git synced 2025-01-18 12:52:44 +01:00
RIOT/sys/net/gnrc/network_layer/sixlowpan/frag/rbuf.c
Martine Lenders 67d7aeab7e gnrc_sixlowpan: Introduce 6Lo GNRC dispatch sub-layer
This abstracts the sending and receiving of 6Lo packets to the new
6Lo sub-layer model introduced in #8511 and exemplifies it as well.
2018-03-01 14:15:07 +01:00

342 lines
12 KiB
C

/*
* Copyright (C) 2015 Martine Lenders <mlenders@inf.fu-berlin.de>
*
* This file is subject to the terms and conditions of the GNU Lesser
* General Public License v2.1. See the file LICENSE in the top level
* directory for more details.
*/
/**
* @{
*
* @file
*/
#include <inttypes.h>
#include <stdbool.h>
#include "rbuf.h"
#include "net/ipv6.h"
#include "net/ipv6/hdr.h"
#include "net/gnrc.h"
#include "net/gnrc/sixlowpan.h"
#include "net/gnrc/sixlowpan/frag.h"
#include "net/sixlowpan.h"
#include "thread.h"
#include "xtimer.h"
#include "utlist.h"
#define ENABLE_DEBUG (0)
#include "debug.h"
/* estimated fragment payload size to determinate RBUF_INT_SIZE, default to
* MAC payload size - fragment header. */
#ifndef GNRC_SIXLOWPAN_FRAG_SIZE
/* assuming 64-bit source/destination address, source PAN ID omitted */
#define GNRC_SIXLOWPAN_FRAG_SIZE (104 - 5)
#endif
#ifndef RBUF_INT_SIZE
/* same as ((int) ceil((double) N / D)) */
#define DIV_CEIL(N, D) (((N) + (D) - 1) / (D))
#define RBUF_INT_SIZE (DIV_CEIL(IPV6_MIN_MTU, GNRC_SIXLOWPAN_FRAG_SIZE) * RBUF_SIZE)
#endif
static rbuf_int_t rbuf_int[RBUF_INT_SIZE];
static rbuf_t rbuf[RBUF_SIZE];
static char l2addr_str[3 * RBUF_L2ADDR_MAX_LEN];
/* ------------------------------------
* internal function definitions
* ------------------------------------*/
/* checks whether start and end overlaps, but not identical to, given interval i */
static inline bool _rbuf_int_overlap_partially(rbuf_int_t *i, uint16_t start, uint16_t end);
/* gets a free entry from interval buffer */
static rbuf_int_t *_rbuf_int_get_free(void);
/* remove entry from reassembly buffer */
static void _rbuf_rem(rbuf_t *entry);
/* update interval buffer of entry */
static bool _rbuf_update_ints(rbuf_t *entry, uint16_t offset, size_t frag_size);
/* checks timeouts and removes entries if necessary (oldest if full) */
static void _rbuf_gc(void);
/* gets an entry identified by its tupel */
static rbuf_t *_rbuf_get(const void *src, size_t src_len,
const void *dst, size_t dst_len,
size_t size, uint16_t tag);
void rbuf_add(gnrc_netif_hdr_t *netif_hdr, gnrc_pktsnip_t *pkt,
size_t frag_size, size_t offset)
{
rbuf_t *entry;
/* cppcheck-suppress variableScope
* (reason: cppcheck is clearly wrong here) */
unsigned int data_offset = 0;
size_t original_size = frag_size;
sixlowpan_frag_t *frag = pkt->data;
rbuf_int_t *ptr;
uint8_t *data = ((uint8_t *)pkt->data) + sizeof(sixlowpan_frag_t);
_rbuf_gc();
entry = _rbuf_get(gnrc_netif_hdr_get_src_addr(netif_hdr), netif_hdr->src_l2addr_len,
gnrc_netif_hdr_get_dst_addr(netif_hdr), netif_hdr->dst_l2addr_len,
byteorder_ntohs(frag->disp_size) & SIXLOWPAN_FRAG_SIZE_MASK,
byteorder_ntohs(frag->tag));
if (entry == NULL) {
DEBUG("6lo rbuf: reassembly buffer full.\n");
return;
}
ptr = entry->ints;
/* dispatches in the first fragment are ignored */
if (offset == 0) {
if (data[0] == SIXLOWPAN_UNCOMP) {
data++; /* skip 6LoWPAN dispatch */
frag_size--;
}
#ifdef MODULE_GNRC_SIXLOWPAN_IPHC
else if (sixlowpan_iphc_is(data)) {
size_t iphc_len, nh_len = 0;
iphc_len = gnrc_sixlowpan_iphc_decode(&entry->pkt, pkt, entry->pkt->size,
sizeof(sixlowpan_frag_t), &nh_len);
if (iphc_len == 0) {
DEBUG("6lo rfrag: could not decode IPHC dispatch\n");
gnrc_pktbuf_release(entry->pkt);
_rbuf_rem(entry);
return;
}
data += iphc_len; /* take remaining data as data */
frag_size -= iphc_len; /* and reduce frag size by IPHC dispatch length */
/* but add IPv6 header + next header lengths */
frag_size += sizeof(ipv6_hdr_t) + nh_len;
/* start copying after IPv6 header and next headers */
data_offset += sizeof(ipv6_hdr_t) + nh_len;
}
#endif
}
else {
data++; /* FRAGN header is one byte longer (offset) */
}
if ((offset + frag_size) > entry->pkt->size) {
DEBUG("6lo rfrag: fragment too big for resulting datagram, discarding datagram\n");
gnrc_pktbuf_release(entry->pkt);
_rbuf_rem(entry);
return;
}
/* If the fragment overlaps another fragment and differs in either the size
* or the offset of the overlapped fragment, discards the datagram
* https://tools.ietf.org/html/rfc4944#section-5.3 */
while (ptr != NULL) {
if (_rbuf_int_overlap_partially(ptr, offset, offset + frag_size - 1)) {
DEBUG("6lo rfrag: overlapping intervals, discarding datagram\n");
gnrc_pktbuf_release(entry->pkt);
_rbuf_rem(entry);
/* "A fresh reassembly may be commenced with the most recently
* received link fragment"
* https://tools.ietf.org/html/rfc4944#section-5.3 */
rbuf_add(netif_hdr, pkt, original_size, offset);
return;
}
ptr = ptr->next;
}
if (_rbuf_update_ints(entry, offset, frag_size)) {
DEBUG("6lo rbuf: add fragment data\n");
entry->cur_size += (uint16_t)frag_size;
memcpy(((uint8_t *)entry->pkt->data) + offset + data_offset, data,
frag_size - data_offset);
}
if (entry->cur_size == entry->pkt->size) {
gnrc_pktsnip_t *netif = gnrc_netif_hdr_build(entry->src, entry->src_len,
entry->dst, entry->dst_len);
if (netif == NULL) {
DEBUG("6lo rbuf: error allocating netif header\n");
gnrc_pktbuf_release(entry->pkt);
_rbuf_rem(entry);
return;
}
/* copy the transmit information of the latest fragment into the newly
* created header to have some link_layer information. The link_layer
* info of the previous fragments is discarded.
*/
gnrc_netif_hdr_t *new_netif_hdr = netif->data;
new_netif_hdr->if_pid = netif_hdr->if_pid;
new_netif_hdr->flags = netif_hdr->flags;
new_netif_hdr->lqi = netif_hdr->lqi;
new_netif_hdr->rssi = netif_hdr->rssi;
LL_APPEND(entry->pkt, netif);
gnrc_sixlowpan_dispatch_recv(entry->pkt, NULL, 0);
_rbuf_rem(entry);
}
}
static inline bool _rbuf_int_overlap_partially(rbuf_int_t *i, uint16_t start, uint16_t end)
{
/* start and ends are both inclusive, so using <= for both */
return ((i->start <= end) && (start <= i->end)) && /* overlaps */
((start != i->start) || (end != i->end)); /* not identical */
}
static rbuf_int_t *_rbuf_int_get_free(void)
{
for (unsigned int i = 0; i < RBUF_INT_SIZE; i++) {
if (rbuf_int[i].end == 0) { /* start must be smaller than end anyways*/
return rbuf_int + i;
}
}
return NULL;
}
static void _rbuf_rem(rbuf_t *entry)
{
while (entry->ints != NULL) {
rbuf_int_t *next = entry->ints->next;
entry->ints->start = 0;
entry->ints->end = 0;
entry->ints->next = NULL;
entry->ints = next;
}
entry->pkt = NULL;
}
static bool _rbuf_update_ints(rbuf_t *entry, uint16_t offset, size_t frag_size)
{
rbuf_int_t *new;
uint16_t end = (uint16_t)(offset + frag_size - 1);
new = _rbuf_int_get_free();
if (new == NULL) {
DEBUG("6lo rfrag: no space left in rbuf interval buffer.\n");
return false;
}
new->start = offset;
new->end = end;
DEBUG("6lo rfrag: add interval (%" PRIu16 ", %" PRIu16 ") to entry (%s, ",
new->start, new->end, gnrc_netif_addr_to_str(entry->src,
entry->src_len,
l2addr_str));
DEBUG("%s, %u, %u)\n", gnrc_netif_addr_to_str(entry->dst, entry->dst_len,
l2addr_str),
(unsigned)entry->pkt->size, entry->tag);
LL_PREPEND(entry->ints, new);
return true;
}
static void _rbuf_gc(void)
{
uint32_t now_usec = xtimer_now_usec();
unsigned int i;
for (i = 0; i < RBUF_SIZE; i++) {
/* since pkt occupies pktbuf, aggressivly collect garbage */
if ((rbuf[i].pkt != NULL) &&
((now_usec - rbuf[i].arrival) > RBUF_TIMEOUT)) {
DEBUG("6lo rfrag: entry (%s, ",
gnrc_netif_addr_to_str(rbuf[i].src, rbuf[i].src_len,
l2addr_str));
DEBUG("%s, %u, %u) timed out\n",
gnrc_netif_addr_to_str(rbuf[i].dst, rbuf[i].dst_len,
l2addr_str),
(unsigned)rbuf[i].pkt->size, rbuf[i].tag);
gnrc_pktbuf_release(rbuf[i].pkt);
_rbuf_rem(&(rbuf[i]));
}
}
}
static rbuf_t *_rbuf_get(const void *src, size_t src_len,
const void *dst, size_t dst_len,
size_t size, uint16_t tag)
{
rbuf_t *res = NULL, *oldest = NULL;
uint32_t now_usec = xtimer_now_usec();
for (unsigned int i = 0; i < RBUF_SIZE; i++) {
/* check first if entry already available */
if ((rbuf[i].pkt != NULL) && (rbuf[i].pkt->size == size) &&
(rbuf[i].tag == tag) && (rbuf[i].src_len == src_len) &&
(rbuf[i].dst_len == dst_len) &&
(memcmp(rbuf[i].src, src, src_len) == 0) &&
(memcmp(rbuf[i].dst, dst, dst_len) == 0)) {
DEBUG("6lo rfrag: entry %p (%s, ", (void *)(&rbuf[i]),
gnrc_netif_addr_to_str(rbuf[i].src, rbuf[i].src_len,
l2addr_str));
DEBUG("%s, %u, %u) found\n",
gnrc_netif_addr_to_str(rbuf[i].dst, rbuf[i].dst_len,
l2addr_str),
(unsigned)rbuf[i].pkt->size, rbuf[i].tag);
rbuf[i].arrival = now_usec;
return &(rbuf[i]);
}
/* if there is a free spot: remember it */
if ((res == NULL) && (rbuf[i].pkt == NULL)) {
res = &(rbuf[i]);
}
/* remember oldest slot */
/* note that xtimer_now will overflow in ~1.2 hours */
if ((oldest == NULL) || (oldest->arrival - rbuf[i].arrival < UINT32_MAX / 2)) {
oldest = &(rbuf[i]);
}
}
/* entry not in buffer and no empty spot found */
if (res == NULL) {
assert(oldest != NULL);
assert(oldest->pkt != NULL); /* if oldest->pkt == NULL, res must not be NULL */
DEBUG("6lo rfrag: reassembly buffer full, remove oldest entry\n");
gnrc_pktbuf_release(oldest->pkt);
_rbuf_rem(oldest);
res = oldest;
}
/* now we have an empty spot */
res->pkt = gnrc_pktbuf_add(NULL, NULL, size, GNRC_NETTYPE_IPV6);
if (res->pkt == NULL) {
DEBUG("6lo rfrag: can not allocate reassembly buffer space.\n");
return NULL;
}
*((uint64_t *)res->pkt->data) = 0; /* clean first few bytes for later
* look-ups */
res->arrival = now_usec;
memcpy(res->src, src, src_len);
memcpy(res->dst, dst, dst_len);
res->src_len = src_len;
res->dst_len = dst_len;
res->tag = tag;
res->cur_size = 0;
DEBUG("6lo rfrag: entry %p (%s, ", (void *)res,
gnrc_netif_addr_to_str(res->src, res->src_len, l2addr_str));
DEBUG("%s, %u, %u) created\n",
gnrc_netif_addr_to_str(res->dst, res->dst_len, l2addr_str), (unsigned)res->pkt->size,
res->tag);
return res;
}
/** @} */