1
0
mirror of https://github.com/RIOT-OS/RIOT.git synced 2025-01-18 09:52:45 +01:00
RIOT/sys/include/net/sock/dtls.h
benpicco 222a2e1d99
Merge pull request #20478 from mariemC/Mariem/dtls_default_user_params_fix
pkg/tinydtls: enforce the default dtls user params to be configurable
2024-03-26 17:48:08 +00:00

1129 lines
43 KiB
C

/*
* Copyright (C) 2019 HAW Hamburg
* Freie Universität Berlin
* Inria
* Daniele Lacamera
* Ken Bannister
*
* This file is subject to the terms and conditions of the GNU Lesser
* General Public License v2.1. See the file LICENSE in the top level
* directory for more details.
*/
/**
* @defgroup net_sock_dtls DTLS sock API
* @ingroup net_sock net_dtls
* @brief Sock submodule for DTLS
*
* DTLS sock acts as a wrapper for the underlying DTLS module to provide
* encryption for applications using the UDP sock API.
*
* How To Use
* ----------
*
* ### Summary
*
* - Include module implementing the DTLS sock API in the Makefile
* - Add credentials
* 1. Fill credman_credential_t with the credential information
* 2. Add the credential using @ref credman_add()
* - Server operation
* 1. Create UDP sock @ref sock_udp_create()
* 2. Create DTLS sock @ref sock_dtls_create() using role
* @ref SOCK_DTLS_SERVER.
* 3. Optionally:
* - when using PSK ciphersuites, set a hint @ref sock_dtls_set_server_psk_id_hint()
* - add extra credentials @ref sock_dtls_add_credential()
* - when using ECC ciphersuites, set a callback for credential selection
* @ref sock_dtls_set_rpk_cb()
* 4. Start listening with @ref sock_dtls_recv()
* - Client operation
* 1. Create UDP sock @ref sock_udp_create()
* 2. Create DTLS sock @ref sock_dtls_create() using role
* @ref SOCK_DTLS_CLIENT
* 3. Optionally:
* - add extra credentials @ref sock_dtls_add_credential()
* - when using PSK ciphersuites, set a callback for hint reception and credential
* selection @ref sock_dtls_set_client_psk_cb()
* - when using ECC ciphersuites, set a callback for credential selection
* @ref sock_dtls_set_rpk_cb()
* 4. Start handshake session to server @ref sock_dtls_session_init()
* 5. Handle incoming handshake packets with @ref sock_dtls_recv()
* 6. Send packet to server @ref sock_dtls_send()
*
* ## Makefile Includes
*
* First, we need to [include](@ref including-modules) a module that implements
* this API in our applications Makefile. For example the module that
* implements this API for [tinydtls](@ref pkg_tinydtls) is called
* `tinydtls_sock_dtls'.
*
* The corresponding [pkg](@ref pkg) providing the DTLS implementation will be
* automatically included so there is no need to use `USEPKG` to add the pkg
* manually.
*
* Each DTLS implementation may have its own configuration options and caveat.
* This can be found at @ref net_dtls.
*
* ### Adding credentials
*
* Before using this API, either as a server or a client, we first need to
* add the credentials to be used for the encryption using
* [credman](@ref net_credman). Note that credman does not copy the credentials
* given into the system, it only has information about the credentials and
* where it is located at. So it is your responsibility to make sure that the
* credential is valid during the lifetime of your application.
*
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ {.c}
* #include <stdio.h>
*
* #include "net/credman.h"
*
* #define SOCK_DTLS_SERVER_TAG (10)
* #define SOCK_DTLS_CLIENT_TAG (20)
*
* static char *psk_key = "secretPSK";
* static char *psk_id = "secretID";
*
* static const unsigned char server_ecdsa_priv_key[] = {...};
* static const unsigned char server_ecdsa_pub_key_x[] = {...};
* static const unsigned char server_ecdsa_pub_key_y[] = {...};
* static const unsigned char client_pubkey_x[] = {...};
* static const unsigned char client_pubkey_y[] = {...};
*
* static ecdsa_public_key_t other_pubkeys[] = {
* { .x = client_pubkey_x, .y = client_pubkey_y },
* };
*
* int main(void)
* {
* credman_credential_t psk_credential = {
* .type = CREDMAN_TYPE_PSK,
* .tag = SOCK_DTLS_SERVER_TAG,
* .params = {
* .psk = {
* .key = { .s = psk_key, .len = sizeof(psk_key), },
* .id = { .s = psk_id, .len = sizeof(psk_id), },
* },
* },
* };
*
* if (credman_add(&psk_credential) < 0) {
* puts("Error cannot add credential");
* }
*
* credman_credential_t ecc_credential = {
* .type = CREDMAN_TYPE_ECDSA,
* .tag = SOCK_DTLS_SERVER_TAG,
* .params = {
* .ecdsa = {
* .private_key = server_ecdsa_priv_key,
* .public_key = {
* .x = server_ecdsa_pub_key_x,
* .y = server_ecdsa_pub_key_y,
* },
* .client_keys = other_pubkeys,
* .client_keys_size = ARRAY_SIZE(other_pubkeys),
* },
* },
* };
*
* if (credman_add(&ecc_credential) < 0) {
* puts("Error cannot add credential");
* }
*
* // start server/client
* // [...]
* }
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
*
* Above we see an example of how to register a PSK and an ECC credential.
*
* First, we need to include the header file for the API.
*
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ {.c}
* #include "net/credman.h"
*
* int main(void)
* {
* credman_credential_t psk_credential = {
* .type = CREDMAN_TYPE_PSK,
* .tag = SOCK_DTLS_SERVER_TAG,
* .params = {
* .psk = {
* .key = { .s = psk_key, .len = sizeof(psk_key), },
* .id = { .s = psk_id, .len = sizeof(psk_id), },
* },
* },
* };
*
* [...]
* }
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
*
* We tell [credman](@ref net_credman) which credential to add by filling in
* the credentials information in a struct @ref credman_credential_t. For
* PSK credentials, we use enum @ref CREDMAN_TYPE_PSK for the
* [type](@ref credman_credential_t::type).
*
* Next, we must assign a [tag](@ref credman_tag_t) for the credential. Tags
* are unsigned integer values used to identify which DTLS sock has
* access to which credentials. Each DTLS sock will also be assigned a list of tags.
* As a result, a sock can only use credentials that have the same tag as
* the ones in the list.
*
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ {.c}
* if (credman_add(&psk_credential) < 0) {
* puts("Error cannot add credential");
* }
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
*
* After credential information is filled, we can add it to the credential
* pool using @ref credman_add().
*
* For adding credentials of other types, you can follow the steps above except
* credman_credential_t::type and credman_credential_t::params depend on the
* type of credential used.
*
* ### Server Operation
*
* After credentials are added, we can start the server.
*
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ {.c}
* #include <stdio.h>
*
* #include "net/sock/dtls.h"
*
* #define SOCK_DTLS_SERVER_TAG (10)
*
* int main(void)
* {
* // Add credentials
* // [...]
*
* // initialize server
* sock_udp_t udp_sock;
* sock_udp_ep_t local = SOCK_IPV6_EP_ANY;
* local.port = 20220;
* if (sock_udp_create(&udp_sock, &local, NULL, 0) < 0) {
* puts("Error creating UDP sock");
* return -1;
* }
*
* sock_dtls_t dtls_sock;
* if (sock_dtls_create(&dtls_sock, &udp_sock,
* SOCK_DTLS_SERVER_TAG,
* SOCK_DTLS_1_2, SOCK_DTLS_SERVER) < 0) {
* puts("Error creating DTLS sock");
* return -1;
* }
*
* while (1) {
* int res;
* char buf[128];
* sock_dtls_session_t session;
*
* res = sock_dtls_recv(&dtls_sock, &session, buf, sizeof(buf),
* SOCK_NO_TIMEOUT);
* if (res > 0) {
* printf("Received %d bytes\n", res);
* if (sock_dtls_send(&dtls_sock, &session, buf, res) < 0) {
* puts("Error sending reply");
* }
* }
* }
* return 0;
* }
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
*
* This is an example of a DTLS echo server.
*
* DTLS sock uses an initialized UDP sock to send and receive encrypted
* packets. Therefore, the listening port for the server also needs to be
* set here.
*
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ {.c}
* sock_udp_t udp_sock;
* sock_udp_ep_t local = SOCK_IPV6_EP_ANY;
* local.port = 20220;
* if (sock_udp_create(&udp_sock, &local, NULL, 0) < 0) {
* puts("Error creating UDP sock");
* return -1;
* }
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
*
* Using the initialized UDP sock, we can then create our DTLS sock. We use
* SOCK_DTLS_SERVER_TAG, which is defined as `10` in our application code
* beforehand, as our tag. Using @ref SOCK_DTLS_1_2 and @ref SOCK_DTLS_SERVER,
* we set our DTLS endpoint to use DTLS version 1.2 and act as a DTLS server.
*
* Note that some DTLS implementation do not support earlier versions of DTLS.
* In this case, @ref sock_dtls_create() will return an error. A list of
* supported DTLS version for each DTLS implementation can be found at this
* [page](@ref net_dtls). In case of error, the program is stopped.
*
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ {.c}
* #define SOCK_DTLS_SERVER_TAG (10)
*
* [...]
*
* sock_dtls_t dtls_sock;
* if (sock_dtls_create(&dtls_sock, &udp_sock,
* SOCK_DTLS_SERVER_TAG,
* SOCK_DTLS_1_2, SOCK_DTLS_SERVER) < 0) {
* puts("Error creating DTLS sock");
* return -1;
* }
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
*
* Now we can listen to incoming packets using @ref sock_dtls_recv(). The
* application waits indefinitely for new packets. If we want to timeout this
* wait period we could alternatively set the `timeout` parameter of the
* function to a value != @ref SOCK_NO_TIMEOUT. If an error occurs we just
* ignore it and continue looping. We can reply to an incoming message using
* its `session`.
*
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ {.c}
* while (1) {
* int res;
* char buf[128];
* sock_dtls_session_t session;
*
* res = sock_dtls_recv(&dtls_sock, &session, buf, sizeof(buf),
* SOCK_NO_TIMEOUT);
* if (res > 0) {
* printf("Received %d bytes -- echo!\n", res);
* if (sock_dtls_send(&dtls_sock, &session, buf, res) < 0) {
* puts("Error sending reply");
* }
* }
* }
* return 0;
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
*
* ### Client Operation
*
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ {.c}
* #include "net/sock/udp.h"
* #include "net/sock/dtls.h"
* #include "net/ipv6/addr.h"
* #include "net/credman.h"
*
* #define SOCK_DTLS_CLIENT_TAG (20)
*
* #ifndef SERVER_ADDR
* #define SERVER_ADDR "fe80::aa:bb:cc:dd" // replace with the server address
* #endif
*
* int main(void)
* {
* // Add credentials
* // [...]
*
* // initialize client
* char rcv[128];
* sock_udp_t udp_sock;
* sock_udp_ep_t local = SOCK_IPV6_EP_ANY;
* local.port = 12345;
*
* sock_udp_ep_t remote = SOCK_IPV6_EP_ANY;
* remote.port = DTLS_DEFAULT_PORT;
* remote.netif = gnrc_netif_iter(NULL)->pid; // only if gnrc_netif_highlander() returns true
*
* sock_dtls_t dtls_sock;
* sock_dtls_session_t session;
*
* if (!ipv6_addr_from_str((ipv6_addr_t *)remote.addr.ipv6, SERVER_ADDR)) {
* puts("Error parsing destination address");
* return -1;
* }
*
* if (sock_udp_create(&udp_sock, &local, NULL, 0) < 0) {
* puts("Error creating UDP sock");
* return -1;
* }
*
* if (sock_dtls_create(&dtls_sock, &udp_sock,
* SOCK_DTLS_CLIENT_TAG,
* SOCK_DTLS_1_2, SOCK_DTLS_CLIENT) < 0) {
* puts("Error creating DTLS sock");
* sock_udp_close(&udp_sock);
* return -1;
* }
*
* if (sock_dtls_session_init(&dtls_sock, &remote, &session) < 0) {
* puts("Error initiating session");
* sock_dtls_close(&dtls_sock);
* sock_udp_close(&udp_sock);
* return -1;
* }
*
* if (sock_dtls_recv(&dtls_sock, &session, rcv, sizeof(rcv),
* SOCK_NO_TIMEOUT) != -SOCK_DTLS_HANDSHAKE) {
* puts("Error completing handshake");
* sock_dtls_close(&dtls_sock);
* sock_udp_close(&udp_sock);
* return -1;
* }
*
* const char data[] = "HELLO";
* int res = sock_dtls_send(&dtls_sock, &session, data, sizeof(data), 0);
* if (res >= 0) {
* printf("Sent %d bytes\n", res);
* res = sock_dtls_recv(&dtls_sock, &session, rcv, sizeof(rcv),
* SOCK_NO_TIMEOUT);
* if (res > 0) {
* printf("Received %d bytes\n", res);
* }
* }
* else {
* puts("Error sending data");
* }
*
* sock_dtls_session_destroy(&dtls_sock, &session);
* sock_dtls_close(&dtls_sock);
* sock_udp_close(&udp_sock);
* return 0;
* }
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
* This is an example of a DTLS echo client.
*
* Like the server, we must first create the UDP sock.
*
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ {.c}
* sock_udp_t udp_sock;
* sock_udp_ep_t local = SOCK_IPV6_EP_ANY;
* local.port = 12345;
* sock_udp_create(&udp_sock, &local, NULL, 0);
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
*
* After that, we set the address of the remote endpoint and its
* listening port, which is DTLS_DEFAULT_PORT (20220).
*
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ {.c}
* sock_udp_ep_t remote = SOCK_IPV6_EP_ANY;
* remote.port = DTLS_DEFAULT_PORT;
* remote.netif = gnrc_netif_iter(NULL)->pid; // only if gnrc_netif_highlander() returns true
*
* if (!ipv6_addr_from_str((ipv6_addr_t *)remote.addr.ipv6, SERVER_ADDR)) {
* puts("Error parsing destination address");
* return -1;
* }
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
*
* After the UDP sock is created, we can proceed with creating the DTLS sock.
* Before sending the packet, we must first initiate a session handshake with
* the remote endpoint using @ref sock_dtls_session_init(). We will need to call
* @ref sock_dtls_recv() to receive and process all the handshake packets.
* If the handshake is successful and the session is created, we send packets
* to it using @ref sock_dtls_send(). As we already know the session exists,
* we can set the timeout to `0` and listen to the reply with @ref sock_dtls_recv().
*
* Alternatively, set the timeout to of @ref sock_dtls_send() to the duration we
* want to wait for the handshake process. We can also set the timeout to
* @ref SOCK_NO_TIMEOUT to block indefinitely until handshake is complete.
* After handshake completes, the packet will be sent.
*
* @ref sock_dtls_init(), @ref sock_dtls_recv and @ref sock_dtls_close() only
* manages the DTLS layer. That means we still have to clean up the created
* UDP sock from before by calling @ref sock_udp_close() on our UDP sock
* in case of error or we reached the end of the application.
*
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ {.c}
* char rcv[128];
* sock_dtls_t dtls_sock;
* sock_dtls_session_t session;
*
* [...]
*
* if (sock_dtls_create(&dtls_sock, &udp_sock,
* SOCK_DTLS_CLIENT_TAG,
* SOCK_DTLS_1_2, SOCK_DTLS_CLIENT) < 0) {
* puts("Error creating DTLS sock");
* sock_udp_close(&udp_sock);
* return -1;
* }
*
* if (sock_dtls_session_init(&dtls_sock, &remote, &session) < 0) {
* puts("Error initiating session");
* sock_dtls_close(&dtls_sock);
* sock_udp_close(&udp_sock);
* return -1;
* }
*
* if (sock_dtls_recv(&dtls_sock, &session, rcv, sizeof(rcv),
* SOCK_NO_TIMEOUT) != -SOCK_DTLS_HANDSHAKE) {
* puts("Error completing handshake");
* sock_dtls_close(&dtls_sock);
* sock_udp_close(&udp_sock);
* return -1;
* }
*
* const char data[] = "HELLO";
* int res = sock_dtls_send(&dtls_sock, &session, data, sizeof(data), 0);
* if (res >= 0) {
* printf("Sent %d bytes: %*.s\n", res, res, data);
* res = sock_dtls_recv(&dtls_sock, &session, rcv, sizeof(rcv),
* SOCK_NO_TIMEOUT);
* if (res > 0) {
* printf("Received %d bytes: %*.s\n", res, res, rcv);
* }
* }
* else {
* puts("Error sending data");
* }
*
* sock_dtls_session_destroy(&dtls_sock, &session);
* sock_dtls_close(&dtls_sock);
* sock_udp_close(&udp_sock);
* return 0;
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
*
* ### Multi-credential handling
*
* Each sock needs at least one credential tag to operate. `sock_dtls_create` allows to optionally
* assign an initial credential. Extra credentials can be added and removed using
* @ref sock_dtls_add_credential and @ref sock_dtls_remove_credential respectively (found in
* `net/sock/dtls/creds.h`).
*
* #### Pre-shared Keys Cipher Suites
* In the case of PSK, a server can optionally indicate a hint to help the client to decide which
* PSK Identity to use, using @ref sock_dtls_set_server_psk_id_hint
* (see https://tools.ietf.org/html/rfc4279#section-5.2). The client application can
* decide which credential to use based on the sent hint and/or the session information, by
* registering a callback with @ref sock_dtls_set_client_psk_cb. If no callback is registered, or
* fails to chose a tag (i.e. it returns @ref CREDMAN_TAG_EMPTY), the credential is chosen as
* follows: if a hint is sent by the server, all credentials registered to the sock are checked for
* a matching @ref psk_params_t::hint "hint". A credential is selected on matching hint. If no
* credential matches the hint or no hint is provided, the first PSK credential registered in the
* sock is used.
*
* #### Elliptic Curve Cryptography Cipher Suites
* When using ECC both client and server applications can register a callback to decide which of
* the registered credentials should be used, based on the session information. This is done using
* @ref sock_dtls_set_rpk_cb.
*
* In both cases, if no callbacks are registered, the sock implementation will try to find a
* registered credential in the Sock's credential list, that matches the needed type. The first
* one that matches is used.
*
* #### Public key verification when using ECC
*
* By enabling the pseudomodule `sock_dtls_verify_public_key` the DTLS sock will verify the
* public key of the remote peer. When enabled, the DTLS sock will only accept a connection if
* the provided public key is in the list of public keys assigned to the specified sock. This only
* applies when using ECC ciphersuites (i.e., not PSK).
*
* @{
*
* @file
* @brief DTLS sock definitions
*
* @author Aiman Ismail <muhammadaimanbin.ismail@haw-hamburg.de>
* @author Martine Lenders <m.lenders@fu-berlin.de>
* @author Raul A. Fuentes Samaniego <raul.fuentes-samaniego@inria.fr>
* @author Daniele Lacamera <daniele@wolfssl.com>
* @author Ken Bannister <kb2ma@runbox.com>
* @author Leandro Lanzieri <leandro.lanzieri@haw-hamburg.de>
*/
#ifndef NET_SOCK_DTLS_H
#define NET_SOCK_DTLS_H
#include <assert.h>
#include <errno.h>
#include <stdint.h>
#include <stdlib.h>
#include <sys/types.h>
/* net/sock/async/types.h included by net/sock.h needs to re-typedef the
* `sock_dtls_t` to prevent cyclic includes */
#if defined (__clang__)
# pragma clang diagnostic push
# pragma clang diagnostic ignored "-Wtypedef-redefinition"
#endif
#include "net/sock.h"
#include "net/sock/udp.h"
#include "net/credman.h"
#ifdef __cplusplus
extern "C" {
#endif
/**
* @defgroup net_sock_dtls_conf SOCK DTLS compile configuration
* @ingroup net_sock_conf
* @{
*/
/**
* @brief Default buffer size for DTLS handshake (as exponent of 2^n)
*
* As the buffer size ALWAYS needs to be power of two, this option represents
* the exponent of 2^n, which will be used as the size of the buffer
* ( @ref DTLS_HANDSHAKE_BUFSIZE ).
*
*/
#ifndef CONFIG_DTLS_HANDSHAKE_BUFSIZE_EXP
#define CONFIG_DTLS_HANDSHAKE_BUFSIZE_EXP 8
#endif
/** @} */
/**
* @brief Size buffer used in handshake to hold credentials
*/
#ifndef DTLS_HANDSHAKE_BUFSIZE
#define DTLS_HANDSHAKE_BUFSIZE (1 << CONFIG_DTLS_HANDSHAKE_BUFSIZE_EXP)
#endif
/**
* @brief Return value for a successful handshake
*/
#define SOCK_DTLS_HANDSHAKE (EXDEV)
/**
* @brief Force extended master secret extension
*/
#ifndef CONFIG_DTLS_FORCE_EXTENDED_MASTER_SECRET
#define CONFIG_DTLS_FORCE_EXTENDED_MASTER_SECRET 1
#endif
/**
* @brief Force renegotiation info extension
*/
#ifndef CONFIG_DTLS_FORCE_RENEGOTIATION_INFO
#define CONFIG_DTLS_FORCE_RENEGOTIATION_INFO 1
#endif
/**
* @brief DTLS version number
* @anchor sock_dtls_prot_version
* @{
*/
enum {
SOCK_DTLS_1_0 = 1, /**< DTLS version 1.0 */
SOCK_DTLS_1_2 = 2, /**< DTLS version 1.2 */
SOCK_DTLS_1_3 = 3, /**< DTLS version 1.3 */
};
/** @} */
/**
* @brief DTLS role
* @anchor sock_dtls_role
* @{
*/
enum {
SOCK_DTLS_CLIENT = 1, /**< Endpoint client role */
SOCK_DTLS_SERVER = 2, /**< Endpoint server role */
};
/** @} */
/**
* @brief Type for a DTLS sock object
*
* @note API implementers: `struct sock_dtls` needs to be defined by
* an implementation-specific `sock_dtls_types.h`.
*/
typedef struct sock_dtls sock_dtls_t;
#if defined (__clang__)
# pragma clang diagnostic pop
#endif
/**
* @brief Information about a created session.
*/
typedef struct sock_dtls_session sock_dtls_session_t;
/**
* @brief Auxiliary data provided when receiving using an DTLS sock object
*
* @warning Implementations of this API may rely on this type to be compatible
* with @ref sock_udp_aux_rx_t. These implementations need to be
* updated, if this is no longer the case. Users of this API should
* not rely on this compatibility
*/
typedef sock_udp_aux_rx_t sock_dtls_aux_rx_t;
/**
* @brief Auxiliary data provided when sending using an DTLS sock object
*
* @warning Implementations of this API may rely on this type to be compatible
* with @ref sock_udp_aux_rx_t. These implementations need to be
* updated, if this is no longer the case. Users of this API should
* not rely on this compatibility
*/
typedef sock_udp_aux_tx_t sock_dtls_aux_tx_t;
/**
* @brief Called exactly once during `auto_init`.
*
* Calls the initialization function required by the DTLS stack used.
*/
void sock_dtls_init(void);
/**
* @brief Creates a new DTLS sock object
*
* Takes an initialized UDP sock and uses it for the transport.
* Memory allocation functions required by the underlying DTLS
* stack can be called in this function.
*
* @see net_credman.
*
* @param[out] sock The resulting DTLS sock object
* @param[in] udp_sock Existing UDP sock initialized with
* @ref sock_udp_create() to be used underneath.
* @param[in] tag Credential tag of @p sock. The sock will only use
* credentials with the tags registered to it
* (see @ref sock_dtls_add_credential). Set to @ref CREDMAN_TAG_EMPTY to
* create a sock with an empty tag list.
* @param[in] version [DTLS version](@ref sock_dtls_prot_version) to use.
* @param[in] role [Role](@ref sock_dtls_role) of the endpoint.
*
* @return 0 on success.
* @return -1 on error
*/
int sock_dtls_create(sock_dtls_t *sock, sock_udp_t *udp_sock,
credman_tag_t tag, unsigned version, unsigned role);
/**
* @brief Get underlying UDP sock.
*
* @pre `sock != NULL`.
*
* @param[in] sock DTLS sock to get UDP sock from.
*
* @return The underlying UDP sock.
*/
sock_udp_t *sock_dtls_get_udp_sock(sock_dtls_t *sock);
/**
* @brief Initialize session handshake.
*
* Sends a ClientHello message to initialize the handshake. Call
* @ref sock_dtls_recv() to finish the handshake.
*
* @param[in] sock DTLS sock to use
* @param[in] ep Remote endpoint to start a handshake with
* @param[out] remote Resulting session
*
* @return 1, if new handshake is started
* @return 0, if there is an existing session
* @return -ENOMEM, not enough memory to allocate for new peer
* @return -EADDRNOTAVAIL, if the local endpoint of @p sock is not set.
* @return -EINVAL, if @p remote is invalid or @p sock is not properly
* initialized (or closed while sock_udp_recv() blocks).
*/
int sock_dtls_session_init(sock_dtls_t *sock, const sock_udp_ep_t *ep,
sock_dtls_session_t *remote);
/**
* @brief Destroys an existing DTLS session
*
* @pre `(sock != NULL) && (ep != NULL)`
*
* @param[in] sock @ref sock_dtls_t, which the session is created on
* @param[in] remote Remote session to destroy
*
* @note For tinyDTLS this function destroys the session object right after notifying the remote
* peer about the closing. This is an interim solution, preventing endlessly blocked session
* slots, but allows as a consequence truncation attacks.
* More details in the [issue](https://github.com/eclipse/tinydtls/issues/95).
*/
void sock_dtls_session_destroy(sock_dtls_t *sock, sock_dtls_session_t *remote);
/**
* @brief Get the remote UDP endpoint from a session.
*
* @pre `(session != NULL) && (ep != NULL)`
*
* @param[in] session DTLS session
* @param[out] ep UDP endpoint
*/
void sock_dtls_session_get_udp_ep(const sock_dtls_session_t *session,
sock_udp_ep_t *ep);
/**
* @brief Set the remote UDP endpoint from a session.
*
* @pre `(session != NULL) && (ep != NULL)`
*
* @param[in] session DTLS session
* @param[in] ep UDP endpoint
*
* @note Function should only be needed when doing a blocking handshake with
* @ref sock_dtls_send() to set the remote UDP endpoint.
*/
void sock_dtls_session_set_udp_ep(sock_dtls_session_t *session,
const sock_udp_ep_t *ep);
/**
* @brief Receive handshake messages and application data from remote peer.
*
* @param[in] sock DTLS sock to use.
* @param[out] remote Remote DTLS session of the received data.
* Cannot be NULL.
* @param[out] data Pointer where the received data should be stored.
* @param[in] maxlen Maximum space available at @p data.
* @param[in] timeout Receive timeout in microseconds.
* If 0 and no data is available, the function returns
* immediately.
* May be SOCK_NO_TIMEOUT to wait until data
* is available.
* @param[out] aux Auxiliary data about the received datagram.
* May be `NULL`, if it is not required by the application.
*
* @note Function may block if data is not available and @p timeout != 0
*
* @return The number of bytes received on success
* @return -SOCK_DTLS_HANDSHAKE when new handshake is completed
* @return -EADDRNOTAVAIL, if the local endpoint of @p sock is not set.
* @return -EAGAIN, if @p timeout is `0` and no data is available.
* @return -EINVAL, if @p remote is invalid or @p sock is not properly
* initialized (or closed while sock_dtls_recv() blocks).
* @return -ENOBUFS, if buffer space is not large enough to store received
* data.
* @return -ENOMEM, if no memory was available to receive @p data.
* @return -ETIMEDOUT, if @p timeout expired.
*/
ssize_t sock_dtls_recv_aux(sock_dtls_t *sock, sock_dtls_session_t *remote,
void *data, size_t maxlen, uint32_t timeout,
sock_dtls_aux_rx_t *aux);
/**
* @brief Receive handshake messages and application data from remote peer.
*
* @param[in] sock DTLS sock to use.
* @param[out] remote Remote DTLS session of the received data.
* Cannot be NULL.
* @param[out] data Pointer where the received data should be stored.
* @param[in] maxlen Maximum space available at @p data.
* @param[in] timeout Receive timeout in microseconds.
* If 0 and no data is available, the function returns
* immediately.
* May be SOCK_NO_TIMEOUT to wait until data
* is available.
*
* @note Function may block if data is not available and @p timeout != 0
*
* @return The number of bytes received on success
* @return -SOCK_DTLS_HANDSHAKE when new handshake is completed
* @return -EADDRNOTAVAIL, if the local endpoint of @p sock is not set.
* @return -EAGAIN, if @p timeout is `0` and no data is available.
* @return -EINVAL, if @p remote is invalid or @p sock is not properly
* initialized (or closed while sock_dtls_recv() blocks).
* @return -ENOBUFS, if buffer space is not large enough to store received
* data.
* @return -ENOMEM, if no memory was available to receive @p data.
* @return -ETIMEDOUT, if @p timeout expired.
*/
static inline ssize_t sock_dtls_recv(sock_dtls_t *sock,
sock_dtls_session_t *remote,
void *data, size_t maxlen,
uint32_t timeout)
{
return sock_dtls_recv_aux(sock, remote, data, maxlen, timeout, NULL);
}
/**
* @brief Decrypts and provides stack-internal buffer space containing a
* message from a remote peer.
*
* @param[in] sock DTLS sock to use.
* @param[out] remote Remote DTLS session of the received data.
* Cannot be NULL.
* @param[out] data Pointer to a stack-internal buffer space containing the
* received data.
* @param[in,out] buf_ctx Stack-internal buffer context. If it points to a
* `NULL` pointer, the stack returns a new buffer space for
* a new packet. If it does not point to a `NULL` pointer,
* an existing context is assumed to get a next segment in
* a buffer.
* @param[in] timeout Receive timeout in microseconds.
* If 0 and no data is available, the function returns
* immediately.
* May be SOCK_NO_TIMEOUT to wait until data
* is available.
* @param[out] aux Auxiliary data about the received datagram.
* May be `NULL`, if it is not required by the application.
*
* @experimental This function is quite new, not implemented for all stacks
* yet, and may be subject to sudden API changes. Do not use in
* production if this is unacceptable.
*
* @note Function may block if data is not available and @p timeout != 0
*
* @note Function blocks if no packet is currently waiting.
*
* @return The number of bytes received on success. May not be the complete
* payload. Continue calling with the returned @p buf_ctx to get more
* buffers until result is 0 or an error.
* @return 0, if no received data is available, but everything is in order.
* If @p buf_ctx was provided, it was released.
* @return -EADDRNOTAVAIL, if the local endpoint of @p sock is not set.
* @return -EAGAIN, if @p timeout is `0` and no data is available.
* @return -EINVAL, if @p remote is invalid or @p sock is not properly
* initialized (or closed while sock_dtls_recv() blocks).
* @return -ENOMEM, if no memory was available to receive @p data.
* @return -ETIMEDOUT, if @p timeout expired.
*/
ssize_t sock_dtls_recv_buf_aux(sock_dtls_t *sock, sock_dtls_session_t *remote,
void **data, void **buf_ctx, uint32_t timeout,
sock_dtls_aux_rx_t *aux);
/**
* @brief Decrypts and provides stack-internal buffer space containing a
* message from a remote peer.
*
* @param[in] sock DTLS sock to use.
* @param[out] remote Remote DTLS session of the received data.
* Cannot be NULL.
* @param[out] data Pointer to a stack-internal buffer space containing the
* received data.
* @param[in,out] buf_ctx Stack-internal buffer context. If it points to a
* `NULL` pointer, the stack returns a new buffer space for
* a new packet. If it does not point to a `NULL` pointer,
* an existing context is assumed to get a next segment in
* a buffer.
* @param[in] timeout Receive timeout in microseconds.
* If 0 and no data is available, the function returns
* immediately.
* May be SOCK_NO_TIMEOUT to wait until data
* is available.
*
* @experimental This function is quite new, not implemented for all stacks
* yet, and may be subject to sudden API changes. Do not use in
* production if this is unacceptable.
*
* @note Function may block if data is not available and @p timeout != 0
*
* @note Function blocks if no packet is currently waiting.
*
* @return The number of bytes received on success. May not be the complete
* payload. Continue calling with the returned @p buf_ctx to get more
* buffers until result is 0 or an error.
* @return 0, if no received data is available, but everything is in order.
* If @p buf_ctx was provided, it was released.
* @return -EADDRNOTAVAIL, if the local endpoint of @p sock is not set.
* @return -EAGAIN, if @p timeout is `0` and no data is available.
* @return -EINVAL, if @p remote is invalid or @p sock is not properly
* initialized (or closed while sock_dtls_recv() blocks).
* @return -ENOMEM, if no memory was available to receive @p data.
* @return -ETIMEDOUT, if @p timeout expired.
*/
static inline ssize_t sock_dtls_recv_buf(sock_dtls_t *sock,
sock_dtls_session_t *remote,
void **data, void **buf_ctx,
uint32_t timeout)
{
return sock_dtls_recv_buf_aux(sock, remote, data, buf_ctx, timeout, NULL);
}
/**
* @brief Encrypts and sends a message to a remote peer with non-continous payload
*
* @param[in] sock DTLS sock to use
* @param[in] remote DTLS session to use. A new session will be created
* if no session exist between client and server.
* @param[in] snips List of payload chunks, will be processed in order.
* May be `NULL`.
* @param[in] timeout Handshake timeout in microseconds.
* If `timeout > 0`, will start a new handshake if no
* session exists yet. The function will block until
* handshake completed or timed out.
* May be SOCK_NO_TIMEOUT to block indefinitely until
* handshake complete.
* @param[out] aux Auxiliary data about the transmission.
* May be `NULL`, if it is not required by the application.
*
* @note When blocking, we will need an extra thread to call
* @ref sock_dtls_recv() function to handle the incoming handshake
* messages.
*
* @return The number of bytes sent on success
* @return -ENOTCONN, if `timeout == 0` and no existing session exists with
* @p remote
* @return -EADDRINUSE, if sock_dtls_t::udp_sock has no local end-point.
* @return -EAFNOSUPPORT, if `remote->ep != NULL` and
* sock_dtls_session_t::ep::family of @p remote is != AF_UNSPEC and
* not supported.
* @return -EINVAL, if sock_udp_ep_t::addr of @p remote->ep is an
* invalid address.
* @return -EINVAL, if sock_udp_ep_t::port of @p remote->ep is 0.
* @return -ENOMEM, if no memory was available to send @p data.
* @return -ETIMEDOUT, `0 < timeout < SOCK_NO_TIMEOUT` and timed out.
*/
ssize_t sock_dtls_sendv_aux(sock_dtls_t *sock, sock_dtls_session_t *remote,
const iolist_t *snips, uint32_t timeout,
sock_dtls_aux_tx_t *aux);
/**
* @brief Encrypts and sends a message to a remote peer
*
* @param[in] sock DTLS sock to use
* @param[in] remote DTLS session to use. A new session will be created
* if no session exist between client and server.
* @param[in] data Pointer where the data to be send are stored
* @param[in] len Length of @p data to be send
* @param[in] timeout Handshake timeout in microseconds.
* If `timeout > 0`, will start a new handshake if no
* session exists yet. The function will block until
* handshake completed or timed out.
* May be SOCK_NO_TIMEOUT to block indefinitely until
* handshake complete.
* @param[out] aux Auxiliary data about the transmission.
* May be `NULL`, if it is not required by the application.
*
* @note When blocking, we will need an extra thread to call
* @ref sock_dtls_recv() function to handle the incoming handshake
* messages.
*
* @return The number of bytes sent on success
* @return -ENOTCONN, if `timeout == 0` and no existing session exists with
* @p remote
* @return -EADDRINUSE, if sock_dtls_t::udp_sock has no local end-point.
* @return -EAFNOSUPPORT, if `remote->ep != NULL` and
* sock_dtls_session_t::ep::family of @p remote is != AF_UNSPEC and
* not supported.
* @return -EINVAL, if sock_udp_ep_t::addr of @p remote->ep is an
* invalid address.
* @return -EINVAL, if sock_udp_ep_t::port of @p remote->ep is 0.
* @return -ENOMEM, if no memory was available to send @p data.
* @return -ETIMEDOUT, `0 < timeout < SOCK_NO_TIMEOUT` and timed out.
*/
static inline ssize_t sock_dtls_send_aux(sock_dtls_t *sock,
sock_dtls_session_t *remote,
const void *data, size_t len,
uint32_t timeout,
sock_dtls_aux_tx_t *aux)
{
const iolist_t snip = {
.iol_base = (void *)data,
.iol_len = len,
};
return sock_dtls_sendv_aux(sock, remote, &snip, timeout, aux);
}
/**
* @brief Encrypts and sends a message to a remote peer
*
* @param[in] sock DTLS sock to use
* @param[in] remote DTLS session to use. A new session will be created
* if no session exist between client and server.
* @param[in] data Pointer where the data to be send are stored
* @param[in] len Length of @p data to be send
* @param[in] timeout Handshake timeout in microseconds.
* If `timeout > 0`, will start a new handshake if no
* session exists yet. The function will block until
* handshake completed or timed out.
* May be SOCK_NO_TIMEOUT to block indefinitely until
* handshake complete.
*
* @note When blocking, we will need an extra thread to call
* @ref sock_dtls_recv() function to handle the incoming handshake
* messages.
* An example for a blocking handshake is:
* 1. Create an empty @ref sock_dtls_session_t object.
* 2. Set the UDP endpoint of the peer you want to connect to in the
* session object with @ref sock_dtls_session_set_udp_ep().
* 3. Call @ref sock_dtls_send() with a timeout greater than 0.
* The send function blocks until the handshake completes or the
* timeout expires. If the handshake was successful the data has
* been sent.
*
* @return The number of bytes sent on success
* @return -ENOTCONN, if `timeout == 0` and no existing session exists with
* @p remote
* @return -EADDRINUSE, if sock_dtls_t::udp_sock has no local end-point.
* @return -EAFNOSUPPORT, if `remote->ep != NULL` and
* sock_dtls_session_t::ep::family of @p remote is != AF_UNSPEC and
* not supported.
* @return -EINVAL, if sock_udp_ep_t::addr of @p remote->ep is an
* invalid address.
* @return -EINVAL, if sock_udp_ep_t::port of @p remote->ep is 0.
* @return -ENOMEM, if no memory was available to send @p data.
* @return -ETIMEDOUT, `0 < timeout < SOCK_NO_TIMEOUT` and timed out.
*/
static inline ssize_t sock_dtls_send(sock_dtls_t *sock,
sock_dtls_session_t *remote,
const void *data, size_t len,
uint32_t timeout)
{
return sock_dtls_send_aux(sock, remote, data, len, timeout, NULL);
}
/**
* @brief Encrypts and sends a message to a remote peer with non-continous payload
*
* @param[in] sock DTLS sock to use
* @param[in] remote DTLS session to use. A new session will be created
* if no session exist between client and server.
* @param[in] snips List of payload chunks, will be processed in order.
* May be `NULL`.
* @param[in] timeout Handshake timeout in microseconds.
* If `timeout > 0`, will start a new handshake if no
* session exists yet. The function will block until
* handshake completed or timed out.
* May be SOCK_NO_TIMEOUT to block indefinitely until
* handshake complete.
*
* @note When blocking, we will need an extra thread to call
* @ref sock_dtls_recv() function to handle the incoming handshake
* messages.
* An example for a blocking handshake is:
* 1. Create an empty @ref sock_dtls_session_t object.
* 2. Set the UDP endpoint of the peer you want to connect to in the
* session object with @ref sock_dtls_session_set_udp_ep().
* 3. Call @ref sock_dtls_send() with a timeout greater than 0.
* The send function blocks until the handshake completes or the
* timeout expires. If the handshake was successful the data has
* been sent.
*
* @return The number of bytes sent on success
* @return -ENOTCONN, if `timeout == 0` and no existing session exists with
* @p remote
* @return -EADDRINUSE, if sock_dtls_t::udp_sock has no local end-point.
* @return -EAFNOSUPPORT, if `remote->ep != NULL` and
* sock_dtls_session_t::ep::family of @p remote is != AF_UNSPEC and
* not supported.
* @return -EINVAL, if sock_udp_ep_t::addr of @p remote->ep is an
* invalid address.
* @return -EINVAL, if sock_udp_ep_t::port of @p remote->ep is 0.
* @return -ENOMEM, if no memory was available to send @p data.
* @return -ETIMEDOUT, `0 < timeout < SOCK_NO_TIMEOUT` and timed out.
*/
static inline ssize_t sock_dtls_sendv(sock_dtls_t *sock,
sock_dtls_session_t *remote,
const iolist_t *snips,
uint32_t timeout)
{
return sock_dtls_sendv_aux(sock, remote, snips, timeout, NULL);
}
/**
* @brief Closes a DTLS sock
*
* Releases any memory allocated by @ref sock_dtls_create(). This function does
* NOT close the UDP sock used by the DTLS sock. After the call to this
* function, user will have to call @ref sock_udp_close() to close the UDP
* sock.
*
* @pre `(sock != NULL)`
*
* @param sock DTLS sock to close
*/
void sock_dtls_close(sock_dtls_t *sock);
#ifdef MODULE_SOCK_DTLS
#include "sock_dtls_types.h"
#endif
#ifdef __cplusplus
}
#endif
#endif /* NET_SOCK_DTLS_H */
/** @} */