mirror of
https://github.com/RIOT-OS/RIOT.git
synced 2025-01-18 12:52:44 +01:00
2845554b4e
`flashpage_write_raw()` got renamed to `flashpage_write()`. Now `sam0_flashpage_aux_write_raw()` is the only remaining 'raw' function, even though it behaves just like `flashpage_write()`. So let's also rename that for consistency.
385 lines
10 KiB
C
385 lines
10 KiB
C
/*
|
|
* Copyright (C) 2016 Freie Universität Berlin
|
|
*
|
|
* This file is subject to the terms and conditions of the GNU Lesser
|
|
* General Public License v2.1. See the file LICENSE in the top level
|
|
* directory for more details.
|
|
*/
|
|
|
|
/**
|
|
* @ingroup cpu_sam0_common
|
|
* @ingroup drivers_periph_adc
|
|
* @{
|
|
*
|
|
* @file
|
|
* @brief Low-level flash page driver implementation
|
|
*
|
|
* The sam0 has its flash memory organized in pages and rows, where each row
|
|
* consists of 4 pages. While pages are writable one at a time, it is only
|
|
* possible to delete a complete row. This implementation abstracts this
|
|
* behavior by only writing complete rows at a time, so the FLASHPAGE_SIZE we
|
|
* use in RIOT is actually the row size as specified in the datasheet.
|
|
*
|
|
* @author Hauke Petersen <hauke.petersen@fu-berlin.de>
|
|
* @author Benjamin Valentin <benjamin.valentin@ml-pa.com>
|
|
*
|
|
* @}
|
|
*/
|
|
|
|
#include <assert.h>
|
|
#include <string.h>
|
|
|
|
#include "cpu.h"
|
|
#include "periph/flashpage.h"
|
|
|
|
#define ENABLE_DEBUG 0
|
|
#include "debug.h"
|
|
|
|
#define MIN(x, y) (((x) < (y)) ? (x) : (y))
|
|
|
|
/* Write Quad Word is the only allowed operation on AUX pages */
|
|
#if defined(NVMCTRL_CTRLB_CMD_WQW)
|
|
#define AUX_CHUNK_SIZE (4 * sizeof(uint32_t))
|
|
#elif defined(AUX_PAGE_SIZE)
|
|
#define AUX_CHUNK_SIZE AUX_PAGE_SIZE
|
|
#else
|
|
#define AUX_CHUNK_SIZE FLASH_USER_PAGE_SIZE
|
|
#endif
|
|
|
|
/**
|
|
* @brief NVMCTRL selection macros
|
|
*/
|
|
#ifdef CPU_FAM_SAML11
|
|
#define _NVMCTRL NVMCTRL_SEC
|
|
#else
|
|
#define _NVMCTRL NVMCTRL
|
|
#endif
|
|
|
|
static inline void wait_nvm_is_ready(void)
|
|
{
|
|
#ifdef NVMCTRL_STATUS_READY
|
|
while (!_NVMCTRL->STATUS.bit.READY) {}
|
|
#else
|
|
while (!_NVMCTRL->INTFLAG.bit.READY) {}
|
|
#endif
|
|
}
|
|
|
|
static void _unlock(void)
|
|
{
|
|
/* remove peripheral access lock for the NVMCTRL peripheral */
|
|
#ifdef REG_PAC_WRCTRL
|
|
PAC->WRCTRL.reg = (PAC_WRCTRL_KEY_CLR | ID_NVMCTRL);
|
|
#else
|
|
PAC1->WPCLR.reg = PAC1_WPROT_DEFAULT_VAL;
|
|
#endif
|
|
}
|
|
|
|
static void _lock(void)
|
|
{
|
|
wait_nvm_is_ready();
|
|
|
|
/* put peripheral access lock for the NVMCTRL peripheral */
|
|
#ifdef REG_PAC_WRCTRL
|
|
PAC->WRCTRL.reg = (PAC_WRCTRL_KEY_SET | ID_NVMCTRL);
|
|
#else
|
|
PAC1->WPSET.reg = PAC1_WPROT_DEFAULT_VAL;
|
|
#endif
|
|
|
|
/* cached flash contents may have changed - invalidate cache */
|
|
#ifdef CMCC
|
|
CMCC->MAINT0.bit.INVALL = 1;
|
|
#endif
|
|
}
|
|
|
|
static void _cmd_clear_page_buffer(void)
|
|
{
|
|
wait_nvm_is_ready();
|
|
|
|
#ifdef NVMCTRL_CTRLB_CMDEX_KEY
|
|
_NVMCTRL->CTRLB.reg = (NVMCTRL_CTRLB_CMDEX_KEY | NVMCTRL_CTRLB_CMD_PBC);
|
|
#else
|
|
_NVMCTRL->CTRLA.reg = (NVMCTRL_CTRLA_CMDEX_KEY | NVMCTRL_CTRLA_CMD_PBC);
|
|
#endif
|
|
}
|
|
|
|
static void _cmd_erase_aux(void)
|
|
{
|
|
wait_nvm_is_ready();
|
|
|
|
/* send Erase Page/Auxiliary Row command */
|
|
#if defined(NVMCTRL_CTRLB_CMD_EP)
|
|
_NVMCTRL->CTRLB.reg = (NVMCTRL_CTRLB_CMDEX_KEY | NVMCTRL_CTRLB_CMD_EP);
|
|
#elif defined(NVMCTRL_CTRLA_CMD_EAR)
|
|
_NVMCTRL->CTRLA.reg = (NVMCTRL_CTRLA_CMDEX_KEY | NVMCTRL_CTRLA_CMD_EAR);
|
|
#else
|
|
/* SAML1x uses same command for all areas */
|
|
_NVMCTRL->CTRLA.reg = (NVMCTRL_CTRLA_CMDEX_KEY | NVMCTRL_CTRLA_CMD_ER);
|
|
#endif
|
|
}
|
|
|
|
static void _cmd_erase_row(void)
|
|
{
|
|
wait_nvm_is_ready();
|
|
|
|
/* send Row/Block erase command */
|
|
#ifdef NVMCTRL_CTRLB_CMDEX_KEY
|
|
_NVMCTRL->CTRLB.reg = (NVMCTRL_CTRLB_CMDEX_KEY | NVMCTRL_CTRLB_CMD_EB);
|
|
#else
|
|
_NVMCTRL->CTRLA.reg = (NVMCTRL_CTRLA_CMDEX_KEY | NVMCTRL_CTRLA_CMD_ER);
|
|
#endif
|
|
}
|
|
|
|
static void _cmd_write_aux(void)
|
|
{
|
|
wait_nvm_is_ready();
|
|
|
|
/* write auxiliary page */
|
|
#if defined(NVMCTRL_CTRLA_CMD_WAP)
|
|
_NVMCTRL->CTRLA.reg = (NVMCTRL_CTRLA_CMDEX_KEY | NVMCTRL_CTRLA_CMD_WAP);
|
|
#elif defined(NVMCTRL_CTRLB_CMD_WQW)
|
|
_NVMCTRL->CTRLB.reg = (NVMCTRL_CTRLB_CMDEX_KEY | NVMCTRL_CTRLB_CMD_WQW);
|
|
#else
|
|
/* SAML1x uses same command for all areas */
|
|
_NVMCTRL->CTRLA.reg = (NVMCTRL_CTRLA_CMDEX_KEY | NVMCTRL_CTRLA_CMD_WP);
|
|
#endif
|
|
}
|
|
|
|
static void _cmd_write_page(void)
|
|
{
|
|
wait_nvm_is_ready();
|
|
|
|
/* write page */
|
|
#ifdef NVMCTRL_CTRLB_CMDEX_KEY
|
|
_NVMCTRL->CTRLB.reg = (NVMCTRL_CTRLB_CMDEX_KEY | NVMCTRL_CTRLB_CMD_WP);
|
|
#else
|
|
_NVMCTRL->CTRLA.reg = (NVMCTRL_CTRLA_CMDEX_KEY | NVMCTRL_CTRLA_CMD_WP);
|
|
#endif
|
|
}
|
|
|
|
/* We have to write whole words, but writing 0xFF is basically a no-op
|
|
* so fill the unaligned bytes with 0xFF to get a whole extra word.
|
|
*/
|
|
static uint32_t unaligned_pad_start(const void *_data, uint8_t len)
|
|
{
|
|
const uint8_t *data = _data;
|
|
union {
|
|
uint32_t u32;
|
|
uint8_t u8[4];
|
|
} buffer = {.u32 = ~0};
|
|
|
|
switch (len) {
|
|
case 3:
|
|
buffer.u8[1] = *data++;
|
|
/* fall-through */
|
|
case 2:
|
|
buffer.u8[2] = *data++;
|
|
/* fall-through */
|
|
case 1:
|
|
buffer.u8[3] = *data++;
|
|
}
|
|
|
|
return buffer.u32;
|
|
}
|
|
|
|
/* We have to write whole words, but writing 0xFF is basically a no-op
|
|
* so fill the unaligned bytes with 0xFF to get a whole extra word.
|
|
*/
|
|
static uint32_t unaligned_pad_end(const void *_data, uint8_t len)
|
|
{
|
|
const uint8_t *data = _data;
|
|
union {
|
|
uint32_t u32;
|
|
uint8_t u8[4];
|
|
} buffer = {.u32 = ~0};
|
|
|
|
switch (len) {
|
|
case 3:
|
|
buffer.u8[2] = data[2];
|
|
/* fall-through */
|
|
case 2:
|
|
buffer.u8[1] = data[1];
|
|
/* fall-through */
|
|
case 1:
|
|
buffer.u8[0] = data[0];
|
|
}
|
|
|
|
return buffer.u32;
|
|
}
|
|
|
|
static void _write_page(void* dst, const void *data, size_t len, void (*cmd_write)(void))
|
|
{
|
|
/* set bytes in the first, unaligned word */
|
|
uint8_t unaligned_start = (4 - ((uintptr_t)dst & 0x3)) & 0x3;
|
|
len -= unaligned_start;
|
|
|
|
/* set bytes in the last, unaligned word */
|
|
uint8_t unaligned_end = len & 0x3;
|
|
len -= unaligned_end;
|
|
|
|
/* word align destination address */
|
|
uint32_t *dst32 = (void*)((uintptr_t)dst & ~0x3);
|
|
|
|
_unlock();
|
|
_cmd_clear_page_buffer();
|
|
|
|
/* write the first, unaligned bytes */
|
|
if (unaligned_start) {
|
|
*dst32++ = unaligned_pad_start(data, unaligned_start);
|
|
data = (uint8_t*)data + unaligned_start;
|
|
}
|
|
|
|
/* copy whole words */
|
|
const uint32_t *data32 = data;
|
|
while (len) {
|
|
*dst32++ = *data32++;
|
|
len -= sizeof(uint32_t);
|
|
}
|
|
|
|
/* write the last, unaligned bytes */
|
|
if (unaligned_end) {
|
|
*dst32 = unaligned_pad_end(data32, unaligned_end);
|
|
}
|
|
|
|
cmd_write();
|
|
_lock();
|
|
}
|
|
|
|
static void _erase_page(void* page, void (*cmd_erase)(void))
|
|
{
|
|
uintptr_t page_addr = (uintptr_t)page;
|
|
|
|
/* erase given page (the ADDR register uses 16-bit addresses) */
|
|
_unlock();
|
|
|
|
/* ADDR drives the hardware (16-bit) address to the NVM when a command is executed using CMDEX.
|
|
* 8-bit addresses must be shifted one bit to the right before writing to this register.
|
|
*/
|
|
#if defined(CPU_COMMON_SAMD21) || defined(CPU_COMMON_SAML21)
|
|
page_addr >>= 1;
|
|
#endif
|
|
|
|
/* set Row/Block start address */
|
|
_NVMCTRL->ADDR.reg = page_addr;
|
|
|
|
cmd_erase();
|
|
_lock();
|
|
}
|
|
|
|
static void _write_row(uint8_t *dst, const void *_data, size_t len, size_t chunk_size,
|
|
void (*cmd_write)(void))
|
|
{
|
|
const uint8_t *data = _data;
|
|
|
|
size_t next_chunk = chunk_size - ((uintptr_t)dst & (chunk_size - 1));
|
|
next_chunk = next_chunk ? next_chunk : chunk_size;
|
|
|
|
while (len) {
|
|
size_t chunk = MIN(len, next_chunk);
|
|
next_chunk = chunk_size;
|
|
|
|
_write_page(dst, data, chunk, cmd_write);
|
|
data += chunk;
|
|
dst += chunk;
|
|
len -= chunk;
|
|
}
|
|
}
|
|
|
|
void flashpage_erase(unsigned page)
|
|
{
|
|
assert((unsigned)page < FLASHPAGE_NUMOF);
|
|
_erase_page(flashpage_addr(page), _cmd_erase_row);
|
|
}
|
|
|
|
void flashpage_write(void *target_addr, const void *data, size_t len)
|
|
{
|
|
/* ensure the length doesn't exceed the actual flash size */
|
|
assert(((unsigned)target_addr + len) <=
|
|
(CPU_FLASH_BASE + (FLASHPAGE_SIZE * FLASHPAGE_NUMOF)));
|
|
|
|
_write_row(target_addr, data, len, NVMCTRL_PAGE_SIZE, _cmd_write_page);
|
|
}
|
|
|
|
void sam0_flashpage_aux_write(uint32_t offset, const void *data, size_t len)
|
|
{
|
|
uintptr_t dst = NVMCTRL_USER + sizeof(nvm_user_page_t) + offset;
|
|
|
|
#ifdef FLASH_USER_PAGE_SIZE
|
|
assert(dst + len <= NVMCTRL_USER + FLASH_USER_PAGE_SIZE);
|
|
#else
|
|
assert(dst + len <= NVMCTRL_USER + AUX_PAGE_SIZE * AUX_NB_OF_PAGES);
|
|
#endif
|
|
|
|
_write_row((void*)dst, data, len, AUX_CHUNK_SIZE, _cmd_write_aux);
|
|
}
|
|
|
|
void sam0_flashpage_aux_reset(const nvm_user_page_t *cfg)
|
|
{
|
|
nvm_user_page_t old_cfg;
|
|
|
|
if (cfg == NULL) {
|
|
cfg = &old_cfg;
|
|
memcpy(&old_cfg, (void*)NVMCTRL_USER, sizeof(*cfg));
|
|
}
|
|
|
|
_erase_page((void*)NVMCTRL_USER, _cmd_erase_aux);
|
|
_write_row((void*)NVMCTRL_USER, cfg, sizeof(*cfg), AUX_CHUNK_SIZE, _cmd_write_aux);
|
|
}
|
|
|
|
#ifdef FLASHPAGE_RWWEE_NUMOF
|
|
|
|
static void _cmd_erase_row_rwwee(void)
|
|
{
|
|
wait_nvm_is_ready();
|
|
|
|
/* send erase row command */
|
|
#ifdef NVMCTRL_CTRLA_CMD_RWWEEER
|
|
_NVMCTRL->CTRLA.reg = (NVMCTRL_CTRLA_CMDEX_KEY | NVMCTRL_CTRLA_CMD_RWWEEER);
|
|
#else
|
|
/* SAML1X use the same Erase command for both flash memories */
|
|
_NVMCTRL->CTRLA.reg = (NVMCTRL_CTRLA_CMDEX_KEY | NVMCTRL_CTRLA_CMD_ER);
|
|
#endif
|
|
}
|
|
|
|
static void _cmd_write_page_rwwee(void)
|
|
{
|
|
wait_nvm_is_ready();
|
|
|
|
/* write page */
|
|
#ifdef NVMCTRL_CTRLA_CMD_RWWEEWP
|
|
_NVMCTRL->CTRLA.reg = (NVMCTRL_CTRLA_CMDEX_KEY | NVMCTRL_CTRLA_CMD_RWWEEWP);
|
|
#else
|
|
/* SAML1X use the same Write Page command for both flash memories */
|
|
_NVMCTRL->CTRLA.reg = (NVMCTRL_CTRLA_CMDEX_KEY | NVMCTRL_CTRLA_CMD_WP);
|
|
#endif
|
|
}
|
|
|
|
void flashpage_rwwee_write(void *target_addr, const void *data, size_t len)
|
|
{
|
|
assert(((unsigned)target_addr + len) <=
|
|
(CPU_FLASH_RWWEE_BASE + (FLASHPAGE_SIZE * FLASHPAGE_RWWEE_NUMOF)));
|
|
|
|
_write_row(target_addr, data, len, NVMCTRL_PAGE_SIZE, _cmd_write_page_rwwee);
|
|
}
|
|
|
|
void flashpage_rwwee_write_page(unsigned page, const void *data)
|
|
{
|
|
assert((unsigned)page < FLASHPAGE_RWWEE_NUMOF);
|
|
|
|
_erase_page(flashpage_rwwee_addr(page), _cmd_erase_row_rwwee);
|
|
|
|
if (data == NULL) {
|
|
return;
|
|
}
|
|
|
|
/* One RIOT page is FLASHPAGE_PAGES_PER_ROW SAM0 flash pages (a row) as
|
|
* defined in the file cpu/sam0_common/include/cpu_conf.h, therefore we
|
|
* have to split the write into FLASHPAGE_PAGES_PER_ROW raw calls
|
|
* underneath, each writing a physical page in chunks of 4 bytes (see
|
|
* flashpage_write_raw)
|
|
* The erasing is done once as a full row is always erased.
|
|
*/
|
|
_write_row(flashpage_rwwee_addr(page), data, FLASHPAGE_SIZE, NVMCTRL_PAGE_SIZE,
|
|
_cmd_write_page_rwwee);
|
|
}
|
|
#endif /* FLASHPAGE_RWWEE_NUMOF */
|