1
0
mirror of https://github.com/RIOT-OS/RIOT.git synced 2024-12-29 04:50:03 +01:00
RIOT/drivers/at86rf2xx/at86rf2xx_getset.c
2015-12-05 10:37:04 +01:00

477 lines
16 KiB
C

/*
* Copyright (C) 2015 Freie Universität Berlin
*
* This file is subject to the terms and conditions of the GNU Lesser
* General Public License v2.1. See the file LICENSE in the top level
* directory for more details.
*/
/**
* @ingroup drivers_at86rf2xx
* @{
*
* @file
* @brief Getter and setter functions for the AT86RF2xx drivers
*
* @author Thomas Eichinger <thomas.eichinger@fu-berlin.de>
* @author Hauke Petersen <hauke.petersen@fu-berlin.de>
* @author Baptiste Clenet <bapclenet@gmail.com>
* @author Daniel Krebs <github@daniel-krebs.net>
* @author Kévin Roussel <Kevin.Roussel@inria.fr>
* @author Joakim Nohlgård <joakim.nohlgard@eistec.se>
*
* @}
*/
#include "at86rf2xx.h"
#include "at86rf2xx_internal.h"
#include "at86rf2xx_registers.h"
#include "periph/spi.h"
#define ENABLE_DEBUG (0)
#include "debug.h"
#ifdef MODULE_AT86RF212B
/* See: Table 9-15. Recommended Mapping of TX Power, Frequency Band, and
* PHY_TX_PWR (register 0x05), AT86RF212B data sheet. */
static const uint8_t dbm_to_tx_pow_868[] = {0x1d, 0x1c, 0x1b, 0x1a, 0x19, 0x18,
0x17, 0x15, 0x14, 0x13, 0x12, 0x11,
0x10, 0x0f, 0x31, 0x30, 0x2f, 0x94,
0x93, 0x91, 0x90, 0x29, 0x49, 0x48,
0x47, 0xad, 0xcd, 0xcc, 0xcb, 0xea,
0xe9, 0xe8, 0xe7, 0xe6, 0xe4, 0x80,
0xa0};
static const uint8_t dbm_to_tx_pow_915[] = {0x1d, 0x1c, 0x1b, 0x1a, 0x19, 0x17,
0x16, 0x15, 0x14, 0x13, 0x12, 0x11,
0x10, 0x0f, 0x0e, 0x0d, 0x0c, 0x0b,
0x09, 0x91, 0x08, 0x07, 0x05, 0x27,
0x04, 0x03, 0x02, 0x01, 0x00, 0x86,
0x40, 0x84, 0x83, 0x82, 0x80, 0xc1,
0xc0};
static int16_t _tx_pow_to_dbm_212b(uint8_t channel, uint8_t page, uint8_t reg) {
const uint8_t *dbm_to_tx_pow;
size_t nelem;
if (page == 0 || page == 2) {
/* Channel 0 is 868.3 MHz */
if (channel == 0) {
dbm_to_tx_pow = &dbm_to_tx_pow_868[0];
nelem = sizeof(dbm_to_tx_pow_868) / sizeof(dbm_to_tx_pow_868[0]);
}
else {
/* Channels 1+ are 915 MHz */
dbm_to_tx_pow = &dbm_to_tx_pow_915[0];
nelem = sizeof(dbm_to_tx_pow_915) / sizeof(dbm_to_tx_pow_915[0]);
}
}
else {
return 0;
}
for(size_t i = 0; i < nelem; i++){
if (dbm_to_tx_pow[i] == reg) {
return i - 25;
}
}
return 0;
}
#elif MODULE_AT86RF233
static const int16_t tx_pow_to_dbm[] = {4, 4, 3, 3, 2, 2, 1,
0, -1, -2, -3, -4, -6, -8, -12, -17};
static const uint8_t dbm_to_tx_pow[] = {0x0f, 0x0f, 0x0f, 0x0e, 0x0e, 0x0e,
0x0e, 0x0d, 0x0d, 0x0d, 0x0c, 0x0c,
0x0b, 0x0b, 0x0a, 0x09, 0x08, 0x07,
0x06, 0x05, 0x03,0x00};
#else
static const int16_t tx_pow_to_dbm[] = {3, 3, 2, 2, 1, 1, 0,
-1, -2, -3, -4, -5, -7, -9, -12, -17};
static const uint8_t dbm_to_tx_pow[] = {0x0f, 0x0f, 0x0f, 0x0e, 0x0e, 0x0e,
0x0e, 0x0d, 0x0d, 0x0c, 0x0c, 0x0b,
0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06,
0x05, 0x03, 0x00};
#endif
uint16_t at86rf2xx_get_addr_short(at86rf2xx_t *dev)
{
return (dev->addr_short[0] << 8) | dev->addr_short[1];
}
void at86rf2xx_set_addr_short(at86rf2xx_t *dev, uint16_t addr)
{
dev->addr_short[0] = addr >> 8;
dev->addr_short[1] = addr;
#ifdef MODULE_SIXLOWPAN
/* https://tools.ietf.org/html/rfc4944#section-12 requires the first bit to
* 0 for unicast addresses */
dev->addr_short[1] &= 0x7F;
#endif
at86rf2xx_reg_write(dev, AT86RF2XX_REG__SHORT_ADDR_0,
dev->addr_short[0]);
at86rf2xx_reg_write(dev, AT86RF2XX_REG__SHORT_ADDR_1,
dev->addr_short[1]);
}
uint64_t at86rf2xx_get_addr_long(at86rf2xx_t *dev)
{
uint64_t addr;
uint8_t *ap = (uint8_t *)(&addr);
for (int i = 0; i < 8; i++) {
ap[i] = dev->addr_long[7 - i];
}
return addr;
}
void at86rf2xx_set_addr_long(at86rf2xx_t *dev, uint64_t addr)
{
for (int i = 0; i < 8; i++) {
dev->addr_long[i] = (addr >> ((7 - i) * 8));
at86rf2xx_reg_write(dev, (AT86RF2XX_REG__IEEE_ADDR_0 + i),
dev->addr_long[i]);
}
}
uint8_t at86rf2xx_get_chan(at86rf2xx_t *dev)
{
return dev->chan;
}
void at86rf2xx_set_chan(at86rf2xx_t *dev, uint8_t channel)
{
if ((channel < AT86RF2XX_MIN_CHANNEL) ||
(channel > AT86RF2XX_MAX_CHANNEL) ||
(dev->chan == channel)) {
return;
}
dev->chan = channel;
at86rf2xx_configure_phy(dev);
}
uint8_t at86rf2xx_get_page(at86rf2xx_t *dev)
{
#ifdef MODULE_AT86RF212B
return dev->page;
#else
return 0;
#endif
}
void at86rf2xx_set_page(at86rf2xx_t *dev, uint8_t page)
{
#ifdef MODULE_AT86RF212B
if ((page != 0) && (page != 2)) {
return;
}
dev->page = page;
at86rf2xx_configure_phy(dev);
#endif
}
uint16_t at86rf2xx_get_pan(at86rf2xx_t *dev)
{
return dev->pan;
}
void at86rf2xx_set_pan(at86rf2xx_t *dev, uint16_t pan)
{
dev->pan = pan;
DEBUG("pan0: %u, pan1: %u\n", (uint8_t)pan, pan >> 8);
at86rf2xx_reg_write(dev, AT86RF2XX_REG__PAN_ID_0, (uint8_t)pan);
at86rf2xx_reg_write(dev, AT86RF2XX_REG__PAN_ID_1, (pan >> 8));
}
int16_t at86rf2xx_get_txpower(at86rf2xx_t *dev)
{
#ifdef MODULE_AT86RF212B
uint8_t txpower = at86rf2xx_reg_read(dev, AT86RF2XX_REG__PHY_TX_PWR);
DEBUG("txpower value: %x\n", txpower);
return _tx_pow_to_dbm_212b(dev->chan, dev->page, txpower);
#else
uint8_t txpower = at86rf2xx_reg_read(dev, AT86RF2XX_REG__PHY_TX_PWR)
& AT86RF2XX_PHY_TX_PWR_MASK__TX_PWR;
return tx_pow_to_dbm[txpower];
#endif
}
void at86rf2xx_set_txpower(at86rf2xx_t *dev, int16_t txpower)
{
#ifdef MODULE_AT86RF212B
txpower += 25;
#else
txpower += 17;
#endif
if (txpower < 0) {
txpower = 0;
#ifdef MODULE_AT86RF212B
}
else if (txpower > 36) {
txpower = 36;
#elif MODULE_AT86RF233
}
else if (txpower > 21) {
txpower = 21;
#else
}
else if (txpower > 20) {
txpower = 20;
#endif
}
#ifdef MODULE_AT86RF212B
if (dev->chan == 0) {
at86rf2xx_reg_write(dev, AT86RF2XX_REG__PHY_TX_PWR,
dbm_to_tx_pow_868[txpower]);
}
else if (dev->chan < 11) {
at86rf2xx_reg_write(dev, AT86RF2XX_REG__PHY_TX_PWR,
dbm_to_tx_pow_915[txpower]);
}
#else
at86rf2xx_reg_write(dev, AT86RF2XX_REG__PHY_TX_PWR,
dbm_to_tx_pow[txpower]);
#endif
}
uint8_t at86rf2xx_get_max_retries(at86rf2xx_t *dev)
{
return (at86rf2xx_reg_read(dev, AT86RF2XX_REG__XAH_CTRL_0) >> 4);
}
void at86rf2xx_set_max_retries(at86rf2xx_t *dev, uint8_t max)
{
max = (max > 7) ? 7 : max;
uint8_t tmp = at86rf2xx_reg_read(dev, AT86RF2XX_REG__XAH_CTRL_0);
tmp &= ~(AT86RF2XX_XAH_CTRL_0__MAX_FRAME_RETRIES);
tmp |= (max << 4);
at86rf2xx_reg_write(dev, AT86RF2XX_REG__XAH_CTRL_0, tmp);
}
uint8_t at86rf2xx_get_csma_max_retries(at86rf2xx_t *dev)
{
uint8_t tmp;
tmp = at86rf2xx_reg_read(dev, AT86RF2XX_REG__XAH_CTRL_0);
tmp &= AT86RF2XX_XAH_CTRL_0__MAX_CSMA_RETRIES;
tmp >>= 1;
return tmp;
}
void at86rf2xx_set_csma_max_retries(at86rf2xx_t *dev, int8_t retries)
{
retries = (retries > 5) ? 5 : retries; /* valid values: 0-5 */
retries = (retries < 0) ? 7 : retries; /* max < 0 => disable CSMA (set to 7) */
DEBUG("[at86rf2xx] opt: Set CSMA retries to %u\n", retries);
uint8_t tmp = at86rf2xx_reg_read(dev, AT86RF2XX_REG__XAH_CTRL_0);
tmp &= ~(AT86RF2XX_XAH_CTRL_0__MAX_CSMA_RETRIES);
tmp |= (retries << 1);
at86rf2xx_reg_write(dev, AT86RF2XX_REG__XAH_CTRL_0, tmp);
}
void at86rf2xx_set_csma_backoff_exp(at86rf2xx_t *dev, uint8_t min, uint8_t max)
{
max = (max > 8) ? 8 : max;
min = (min > max) ? max : min;
DEBUG("[at86rf2xx] opt: Set min BE=%u, max BE=%u\n", min, max);
at86rf2xx_reg_write(dev,
AT86RF2XX_REG__CSMA_BE,
(max << 4) | (min));
}
void at86rf2xx_set_csma_seed(at86rf2xx_t *dev, uint8_t entropy[2])
{
if(entropy == NULL) {
DEBUG("[at86rf2xx] opt: CSMA seed entropy is nullpointer\n");
return;
}
DEBUG("[at86rf2xx] opt: Set CSMA seed to 0x%x 0x%x\n", entropy[0], entropy[1]);
at86rf2xx_reg_write(dev,
AT86RF2XX_REG__CSMA_SEED_0,
entropy[0]);
uint8_t tmp = at86rf2xx_reg_read(dev, AT86RF2XX_REG__CSMA_SEED_1);
tmp &= ~(AT86RF2XX_CSMA_SEED_1__CSMA_SEED_1);
tmp |= entropy[1] & AT86RF2XX_CSMA_SEED_1__CSMA_SEED_1;
at86rf2xx_reg_write(dev, AT86RF2XX_REG__CSMA_SEED_1, tmp);
}
int8_t at86rf2xx_get_cca_threshold(at86rf2xx_t *dev)
{
int8_t tmp = at86rf2xx_reg_read(dev, AT86RF2XX_REG__CCA_THRES);
tmp &= AT86RF2XX_CCA_THRES_MASK__CCA_ED_THRES;
tmp <<= 1;
return (RSSI_BASE_VAL + tmp);
}
void at86rf2xx_set_cca_threshold(at86rf2xx_t *dev, int8_t value)
{
/* ensure the given value is negative, since a CCA threshold > 0 is
just impossible: thus, any positive value given is considered
to be the absolute value of the actually wanted threshold */
if (value > 0) {
value = -value;
}
/* transform the dBm value in the form
that will fit in the AT86RF2XX_REG__CCA_THRES register */
value -= RSSI_BASE_VAL;
value >>= 1;
value &= AT86RF2XX_CCA_THRES_MASK__CCA_ED_THRES;
value |= AT86RF2XX_CCA_THRES_MASK__RSVD_HI_NIBBLE;
at86rf2xx_reg_write(dev, AT86RF2XX_REG__CCA_THRES, value);
}
void at86rf2xx_set_option(at86rf2xx_t *dev, uint16_t option, bool state)
{
uint8_t tmp;
DEBUG("set option %i to %i\n", option, state);
/* set option field */
if (state) {
dev->options |= option;
/* trigger option specific actions */
switch (option) {
case AT86RF2XX_OPT_CSMA:
DEBUG("[at86rf2xx] opt: enabling CSMA mode" \
"(4 retries, min BE: 3 max BE: 5)\n");
/* Initialize CSMA seed with hardware address */
at86rf2xx_set_csma_seed(dev, dev->addr_long);
at86rf2xx_set_csma_max_retries(dev, 4);
at86rf2xx_set_csma_backoff_exp(dev, 3, 5);
break;
case AT86RF2XX_OPT_PROMISCUOUS:
DEBUG("[at86rf2xx] opt: enabling PROMISCUOUS mode\n");
/* disable auto ACKs in promiscuous mode */
tmp = at86rf2xx_reg_read(dev, AT86RF2XX_REG__CSMA_SEED_1);
tmp |= AT86RF2XX_CSMA_SEED_1__AACK_DIS_ACK;
at86rf2xx_reg_write(dev, AT86RF2XX_REG__CSMA_SEED_1, tmp);
/* enable promiscuous mode */
tmp = at86rf2xx_reg_read(dev, AT86RF2XX_REG__XAH_CTRL_1);
tmp |= AT86RF2XX_XAH_CTRL_1__AACK_PROM_MODE;
at86rf2xx_reg_write(dev, AT86RF2XX_REG__XAH_CTRL_1, tmp);
break;
case AT86RF2XX_OPT_AUTOACK:
DEBUG("[at86rf2xx] opt: enabling auto ACKs\n");
tmp = at86rf2xx_reg_read(dev, AT86RF2XX_REG__CSMA_SEED_1);
tmp &= ~(AT86RF2XX_CSMA_SEED_1__AACK_DIS_ACK);
at86rf2xx_reg_write(dev, AT86RF2XX_REG__CSMA_SEED_1, tmp);
break;
case AT86RF2XX_OPT_TELL_RX_START:
DEBUG("[at86rf2xx] opt: enabling SFD IRQ\n");
tmp = at86rf2xx_reg_read(dev, AT86RF2XX_REG__IRQ_MASK);
tmp |= AT86RF2XX_IRQ_STATUS_MASK__RX_START;
at86rf2xx_reg_write(dev, AT86RF2XX_REG__IRQ_MASK, tmp);
break;
default:
/* do nothing */
break;
}
}
else {
dev->options &= ~(option);
/* trigger option specific actions */
switch (option) {
case AT86RF2XX_OPT_CSMA:
DEBUG("[at86rf2xx] opt: disabling CSMA mode\n");
/* setting retries to -1 means CSMA disabled */
at86rf2xx_set_csma_max_retries(dev, -1);
break;
case AT86RF2XX_OPT_PROMISCUOUS:
DEBUG("[at86rf2xx] opt: disabling PROMISCUOUS mode\n");
/* disable promiscuous mode */
tmp = at86rf2xx_reg_read(dev, AT86RF2XX_REG__XAH_CTRL_1);
tmp &= ~(AT86RF2XX_XAH_CTRL_1__AACK_PROM_MODE);
at86rf2xx_reg_write(dev, AT86RF2XX_REG__XAH_CTRL_1, tmp);
/* re-enable AUTOACK only if the option is set */
if (dev->options & AT86RF2XX_OPT_AUTOACK) {
tmp = at86rf2xx_reg_read(dev,
AT86RF2XX_REG__CSMA_SEED_1);
tmp &= ~(AT86RF2XX_CSMA_SEED_1__AACK_DIS_ACK);
at86rf2xx_reg_write(dev, AT86RF2XX_REG__CSMA_SEED_1,
tmp);
}
break;
case AT86RF2XX_OPT_AUTOACK:
DEBUG("[at86rf2xx] opt: disabling auto ACKs\n");
tmp = at86rf2xx_reg_read(dev, AT86RF2XX_REG__CSMA_SEED_1);
tmp |= AT86RF2XX_CSMA_SEED_1__AACK_DIS_ACK;
at86rf2xx_reg_write(dev, AT86RF2XX_REG__CSMA_SEED_1, tmp);
break;
case AT86RF2XX_OPT_TELL_RX_START:
DEBUG("[at86rf2xx] opt: disabling SFD IRQ\n");
tmp = at86rf2xx_reg_read(dev, AT86RF2XX_REG__IRQ_MASK);
tmp &= ~AT86RF2XX_IRQ_STATUS_MASK__RX_START;
at86rf2xx_reg_write(dev, AT86RF2XX_REG__IRQ_MASK, tmp);
break;
default:
/* do nothing */
break;
}
}
}
static inline void _set_state(at86rf2xx_t *dev, uint8_t state)
{
at86rf2xx_reg_write(dev, AT86RF2XX_REG__TRX_STATE, state);
while (at86rf2xx_get_status(dev) != state);
dev->state = state;
}
void at86rf2xx_set_state(at86rf2xx_t *dev, uint8_t state)
{
uint8_t old_state = at86rf2xx_get_status(dev);
if (state == old_state) {
return;
}
/* make sure there is no ongoing transmission, or state transition already
* in progress */
while (old_state == AT86RF2XX_STATE_BUSY_RX_AACK ||
old_state == AT86RF2XX_STATE_BUSY_TX_ARET ||
old_state == AT86RF2XX_STATE_IN_PROGRESS) {
old_state = at86rf2xx_get_status(dev);
}
/* we need to go via PLL_ON if we are moving between RX_AACK_ON <-> TX_ARET_ON */
if ((old_state == AT86RF2XX_STATE_RX_AACK_ON &&
state == AT86RF2XX_STATE_TX_ARET_ON) ||
(old_state == AT86RF2XX_STATE_TX_ARET_ON &&
state == AT86RF2XX_STATE_RX_AACK_ON)) {
_set_state(dev, AT86RF2XX_STATE_PLL_ON);
}
/* check if we need to wake up from sleep mode */
else if (old_state == AT86RF2XX_STATE_SLEEP) {
DEBUG("at86rf2xx: waking up from sleep mode\n");
at86rf2xx_assert_awake(dev);
}
if (state == AT86RF2XX_STATE_SLEEP) {
/* First go to TRX_OFF */
at86rf2xx_force_trx_off(dev);
/* Discard all IRQ flags, framebuffer is lost anyway */
at86rf2xx_reg_read(dev, AT86RF2XX_REG__IRQ_STATUS);
/* Go to SLEEP mode from TRX_OFF */
gpio_set(dev->sleep_pin);
dev->state = state;
} else {
_set_state(dev, state);
}
}
void at86rf2xx_reset_state_machine(at86rf2xx_t *dev)
{
uint8_t old_state;
at86rf2xx_assert_awake(dev);
/* Wait for any state transitions to complete before forcing TRX_OFF */
do {
old_state = at86rf2xx_get_status(dev);
} while (old_state == AT86RF2XX_STATE_IN_PROGRESS);
at86rf2xx_force_trx_off(dev);
}