mirror of
https://github.com/RIOT-OS/RIOT.git
synced 2025-01-18 01:32:44 +01:00
783afbc666
The current ISR implementation for AVR8 requires use of avr8_[enter/exit]_isr pair which add some boilerplate on code. This add AVR8_ISR which clean-up the code and make it simpler and hides any schedule detail from the user perspective. This is a preparation for future scheduling and irq optimizations. Signed-off-by: Gerson Fernando Budke <nandojve@gmail.com>
366 lines
9.5 KiB
C
366 lines
9.5 KiB
C
/*
|
|
* Copyright (C) 2014 Freie Universität Berlin, Hinnerk van Bruinehsen
|
|
* 2023 Hugues Larrive
|
|
* 2023 Gerson Fernando Budke
|
|
*
|
|
* This file is subject to the terms and conditions of the GNU Lesser
|
|
* General Public License v2.1. See the file LICENSE in the top level
|
|
* directory for more details.
|
|
*/
|
|
|
|
/**
|
|
* @ingroup cpu_atmega_common
|
|
* @ingroup drivers_periph_timer
|
|
* @{
|
|
*
|
|
* @file
|
|
* @brief Low-level timer driver implementation for the ATmega family
|
|
*
|
|
* @author Hauke Petersen <hauke.petersen@fu-berlin.de>
|
|
* @author Hinnerk van Bruinehsen <h.v.bruinehsen@fu-berlin.de>
|
|
* @author Hugues Larrive <hugues.larrive@pm.me>
|
|
* @author Gerson Fernando Budke <nandojve@gmail.com>
|
|
*
|
|
* @}
|
|
*/
|
|
|
|
#include <assert.h>
|
|
#include <avr/interrupt.h>
|
|
|
|
#include "board.h"
|
|
#include "cpu.h"
|
|
#include "irq.h"
|
|
#include "thread.h"
|
|
|
|
#include "periph/timer.h"
|
|
#include "periph_conf.h"
|
|
|
|
#define ENABLE_DEBUG 0
|
|
#include "debug.h"
|
|
|
|
/**
|
|
* @brief We have 5 possible prescaler values
|
|
*/
|
|
#define PRESCALE_NUMOF (5U)
|
|
|
|
/**
|
|
* @brief Possible prescaler values, encoded as 2 ^ val
|
|
*/
|
|
static const __flash uint8_t prescalers[] = { 0, 3, 6, 8, 10 };
|
|
|
|
/**
|
|
* @brief Timer state context
|
|
*/
|
|
typedef struct {
|
|
mega_timer_t *dev; /**< timer device */
|
|
volatile uint8_t *mask; /**< address of interrupt mask register */
|
|
volatile uint8_t *flag; /**< address of interrupt flag register */
|
|
timer_cb_t cb; /**< interrupt callback */
|
|
void *arg; /**< interrupt callback argument */
|
|
uint8_t mode; /**< remember the configured mode */
|
|
uint8_t isrs; /**< remember the interrupt state */
|
|
} ctx_t;
|
|
|
|
/**
|
|
* @brief Allocate memory for saving the device states
|
|
*/
|
|
static ctx_t ctx[] = {
|
|
#ifdef TIMER_0
|
|
{ TIMER_0, TIMER_0_MASK, TIMER_0_FLAG, NULL, NULL, 0, 0 },
|
|
#endif
|
|
#ifdef TIMER_1
|
|
{ TIMER_1, TIMER_1_MASK, TIMER_1_FLAG, NULL, NULL, 0, 0 },
|
|
#endif
|
|
#ifdef TIMER_2
|
|
{ TIMER_2, TIMER_2_MASK, TIMER_2_FLAG, NULL, NULL, 0, 0 },
|
|
#endif
|
|
#ifdef TIMER_3
|
|
{ TIMER_3, TIMER_3_MASK, TIMER_3_FLAG, NULL, NULL, 0, 0 },
|
|
#endif
|
|
};
|
|
|
|
static unsigned _oneshot;
|
|
|
|
static inline void set_oneshot(tim_t tim, int chan)
|
|
{
|
|
_oneshot |= (1 << chan) << (TIMER_CHANNEL_NUMOF * tim);
|
|
}
|
|
|
|
static inline void clear_oneshot(tim_t tim, int chan)
|
|
{
|
|
_oneshot &= ~((1 << chan) << (TIMER_CHANNEL_NUMOF * tim));
|
|
}
|
|
|
|
static inline bool is_oneshot(tim_t tim, int chan)
|
|
{
|
|
return _oneshot & ((1 << chan) << (TIMER_CHANNEL_NUMOF * tim));
|
|
}
|
|
|
|
/**
|
|
* @brief Setup the given timer
|
|
*/
|
|
int timer_init(tim_t tim, uint32_t freq, timer_cb_t cb, void *arg)
|
|
{
|
|
/*
|
|
* A debug pin can be used to probe timer interrupts with an oscilloscope or
|
|
* other time measurement equipment. Thus, determine when an interrupt occurs
|
|
* and how long the timer ISR takes.
|
|
* The pin should be defined in the makefile as follows:
|
|
* CFLAGS += -DDEBUG_TIMER_PORT=PORTF -DDEBUG_TIMER_DDR=DDRF \
|
|
* -DDEBUG_TIMER_PIN=PORTF4
|
|
*/
|
|
#if defined(DEBUG_TIMER_PORT)
|
|
DEBUG_TIMER_DDR |= (1 << DEBUG_TIMER_PIN);
|
|
DEBUG_TIMER_PORT &= ~(1 << DEBUG_TIMER_PIN);
|
|
DEBUG("Debug Pin: DDR 0x%02x Port 0x%02x Pin 0x%02x\n",
|
|
&DEBUG_TIMER_DDR, &DEBUG_TIMER_PORT, (1 << DEBUG_TIMER_PIN));
|
|
#endif
|
|
|
|
DEBUG("timer.c: freq = %ld\n", freq);
|
|
uint8_t pre = 0;
|
|
|
|
/* make sure given device is valid */
|
|
if (tim >= TIMER_NUMOF) {
|
|
return -1;
|
|
}
|
|
|
|
/* figure out if freq is applicable */
|
|
for (; pre < PRESCALE_NUMOF; pre++) {
|
|
if ((CLOCK_CORECLOCK >> prescalers[pre]) == freq) {
|
|
break;
|
|
}
|
|
}
|
|
if (pre == PRESCALE_NUMOF) {
|
|
DEBUG("timer.c: prescaling from %lu Hz failed!\n", CLOCK_CORECLOCK);
|
|
return -1;
|
|
}
|
|
|
|
/* stop and reset timer */
|
|
ctx[tim].dev->CRA = 0;
|
|
ctx[tim].dev->CRB = 0;
|
|
#ifdef TCCR1C
|
|
ctx[tim].dev->CRC = 0;
|
|
#endif
|
|
ctx[tim].dev->CNT = 0;
|
|
|
|
/* save interrupt context and timer mode */
|
|
ctx[tim].cb = cb;
|
|
ctx[tim].arg = arg;
|
|
ctx[tim].mode = (pre + 1);
|
|
|
|
/* enable timer with calculated prescaler */
|
|
ctx[tim].dev->CRB = (pre + 1);
|
|
DEBUG("timer.c: prescaler set at %d\n", pre + 1);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int timer_set_absolute(tim_t tim, int channel, unsigned int value)
|
|
{
|
|
if (channel >= TIMER_CHANNEL_NUMOF) {
|
|
return -1;
|
|
}
|
|
|
|
unsigned state = irq_disable();
|
|
|
|
ctx[tim].dev->OCR[channel] = (uint16_t)value;
|
|
#if defined(OCF1A) && defined(OCF1B) && (OCF1A < OCF1B)
|
|
/* clear spurious IRQs, if any */
|
|
*ctx[tim].flag = (1 << (OCF1A + channel));
|
|
/* unmask IRQ */
|
|
*ctx[tim].mask |= (1 << (OCIE1A + channel));
|
|
#elif defined(OCF1A) && defined(OCF1B) && (OCF1A > OCF1B)
|
|
/* clear spurious IRQs, if any */
|
|
*ctx[tim].flag = (1 << (OCF1A - channel));
|
|
/* unmask IRQ */
|
|
*ctx[tim].mask |= (1 << (OCIE1A - channel));
|
|
#endif
|
|
set_oneshot(tim, channel);
|
|
|
|
irq_restore(state);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int timer_set(tim_t tim, int channel, unsigned int timeout)
|
|
{
|
|
if (channel >= TIMER_CHANNEL_NUMOF) {
|
|
return -1;
|
|
}
|
|
|
|
unsigned state = irq_disable();
|
|
unsigned absolute = ctx[tim].dev->CNT + timeout;
|
|
|
|
ctx[tim].dev->OCR[channel] = absolute;
|
|
#if defined(OCF1A) && defined(OCF1B) && (OCF1A < OCF1B)
|
|
/* clear spurious IRQs, if any */
|
|
*ctx[tim].flag = (1 << (OCF1A + channel));
|
|
/* unmask IRQ */
|
|
*ctx[tim].mask |= (1 << (OCIE1A + channel));
|
|
#elif defined(OCF1A) && defined(OCF1B) && (OCF1A > OCF1B)
|
|
/* clear spurious IRQs, if any */
|
|
*ctx[tim].flag = (1 << (OCF1A - channel));
|
|
/* unmask IRQ */
|
|
*ctx[tim].mask |= (1 << (OCIE1A - channel));
|
|
#endif
|
|
set_oneshot(tim, channel);
|
|
|
|
if ((absolute - ctx[tim].dev->CNT) > timeout) {
|
|
/* Timer already expired. Trigger the interrupt now and loop until it
|
|
* is triggered.
|
|
*/
|
|
#if defined(OCF1A) && defined(OCF1B) && (OCF1A < OCF1B)
|
|
while (!(*ctx[tim].flag & (1 << (OCF1A + channel)))) {
|
|
#elif defined(OCF1A) && defined(OCF1B) && (OCF1A > OCF1B)
|
|
while (!(*ctx[tim].flag & (1 << (OCF1A - channel)))) {
|
|
#endif
|
|
ctx[tim].dev->OCR[channel] = ctx[tim].dev->CNT;
|
|
}
|
|
}
|
|
|
|
irq_restore(state);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int timer_set_periodic(tim_t tim, int channel, unsigned int value, uint8_t flags)
|
|
{
|
|
int res = 0;
|
|
|
|
if (channel >= TIMER_CHANNEL_NUMOF) {
|
|
return -1;
|
|
}
|
|
|
|
if (flags & TIM_FLAG_RESET_ON_SET) {
|
|
ctx[tim].dev->CNT = 0;
|
|
}
|
|
|
|
unsigned state = irq_disable();
|
|
|
|
ctx[tim].dev->OCR[channel] = (uint16_t)value;
|
|
|
|
#if defined(OCF1A) && defined(OCF1B) && (OCF1A < OCF1B)
|
|
/* clear spurious IRQs, if any */
|
|
*ctx[tim].flag = (1 << (OCF1A + channel));
|
|
/* unmask IRQ */
|
|
*ctx[tim].mask |= (1 << (OCIE1A + channel));
|
|
#elif defined(OCF1A) && defined(OCF1B) && (OCF1A > OCF1B)
|
|
/* clear spurious IRQs, if any */
|
|
*ctx[tim].flag = (1 << (OCF1A - channel));
|
|
/* unmask IRQ */
|
|
*ctx[tim].mask |= (1 << (OCIE1A - channel));
|
|
#endif
|
|
|
|
clear_oneshot(tim, channel);
|
|
|
|
/* only OCR0 can be use to set TOP */
|
|
if (channel == 0) {
|
|
if (flags & TIM_FLAG_RESET_ON_MATCH) {
|
|
/* enable CTC mode */
|
|
ctx[tim].mode |= (1 << 3);
|
|
} else {
|
|
/* disable CTC mode */
|
|
ctx[tim].mode &= (1 << 3);
|
|
}
|
|
/* enable timer or stop it */
|
|
if (flags & TIM_FLAG_SET_STOPPED) {
|
|
ctx[tim].dev->CRB = 0;
|
|
} else {
|
|
ctx[tim].dev->CRB = ctx[tim].mode;
|
|
}
|
|
} else {
|
|
assert((flags & TIM_FLAG_RESET_ON_MATCH) == 0);
|
|
res = -1;
|
|
}
|
|
|
|
irq_restore(state);
|
|
|
|
return res;
|
|
}
|
|
|
|
int timer_clear(tim_t tim, int channel)
|
|
{
|
|
if (channel >= TIMER_CHANNEL_NUMOF) {
|
|
return -1;
|
|
}
|
|
|
|
#if defined(OCIE1A) && defined(OCIE1B) && (OCIE1A < OCIE1B)
|
|
*ctx[tim].mask &= ~(1 << (OCIE1A + channel));
|
|
#elif defined(OCIE1A) && defined(OCIE1B) && (OCIE1A > OCIE1B)
|
|
*ctx[tim].mask &= ~(1 << (OCIE1A - channel));
|
|
#endif
|
|
|
|
return 0;
|
|
}
|
|
|
|
unsigned int timer_read(tim_t tim)
|
|
{
|
|
/* CNT is a 16 bit register, but atomic access is implemented by hardware:
|
|
* A read from the low byte causes the value in the high byte being stored
|
|
* in parallel into a temporary register. The read of the high byte will
|
|
* instead access the temporary register. However, the AVR only has one
|
|
* temporary register that is used to implement atomic access to all 16 bit
|
|
* registers. Thus, access has to be guarded by disabling IRQs.
|
|
*/
|
|
unsigned state = irq_disable();
|
|
unsigned result = ctx[tim].dev->CNT;
|
|
irq_restore(state);
|
|
return result;
|
|
}
|
|
|
|
void timer_stop(tim_t tim)
|
|
{
|
|
ctx[tim].dev->CRB = 0;
|
|
}
|
|
|
|
void timer_start(tim_t tim)
|
|
{
|
|
ctx[tim].dev->CRB = ctx[tim].mode;
|
|
}
|
|
|
|
#ifdef TIMER_NUMOF
|
|
static inline void _isr(tim_t tim, int chan)
|
|
{
|
|
#if defined(DEBUG_TIMER_PORT)
|
|
DEBUG_TIMER_PORT |= (1 << DEBUG_TIMER_PIN);
|
|
#endif
|
|
|
|
if (is_oneshot(tim, chan)) {
|
|
timer_clear(tim, chan);
|
|
}
|
|
ctx[tim].cb(ctx[tim].arg, chan);
|
|
|
|
#if defined(DEBUG_TIMER_PORT)
|
|
DEBUG_TIMER_PORT &= ~(1 << DEBUG_TIMER_PIN);
|
|
#endif
|
|
}
|
|
#endif
|
|
|
|
#ifdef TIMER_0
|
|
AVR8_ISR(TIMER_0_ISRA, _isr, 0, 0);
|
|
AVR8_ISR(TIMER_0_ISRB, _isr, 0, 1);
|
|
#ifdef TIMER_0_ISRC
|
|
AVR8_ISR(TIMER_0_ISRC, _isr, 0, 2);
|
|
#endif /* TIMER_0_ISRC */
|
|
#endif /* TIMER_0 */
|
|
|
|
#ifdef TIMER_1
|
|
AVR8_ISR(TIMER_1_ISRA, _isr, 1, 0);
|
|
AVR8_ISR(TIMER_1_ISRB, _isr, 1, 1);
|
|
#ifdef TIMER_1_ISRC
|
|
AVR8_ISR(TIMER_1_ISRC, _isr, 1, 2);
|
|
#endif /* TIMER_0_ISRC */
|
|
#endif /* TIMER_1 */
|
|
|
|
#ifdef TIMER_2
|
|
AVR8_ISR(TIMER_2_ISRA, _isr, 2, 0);
|
|
AVR8_ISR(TIMER_2_ISRB, _isr, 2, 1);
|
|
AVR8_ISR(TIMER_2_ISRC, _isr, 2, 2);
|
|
#endif /* TIMER_2 */
|
|
|
|
#ifdef TIMER_3
|
|
AVR8_ISR(TIMER_3_ISRA, _isr, 3, 0);
|
|
AVR8_ISR(TIMER_3_ISRB, _isr, 3, 1);
|
|
AVR8_ISR(TIMER_3_ISRC, _isr, 3, 2);
|
|
#endif /* TIMER_3 */
|