1
0
mirror of https://github.com/RIOT-OS/RIOT.git synced 2025-01-18 12:52:44 +01:00
RIOT/cpu/esp8266/periph/i2c.c
2018-11-22 08:09:35 +01:00

752 lines
21 KiB
C

/*
* Copyright (C) 2018 Gunar Schorcht
*
* This file is subject to the terms and conditions of the GNU Lesser
* General Public License v2.1. See the file LICENSE in the top level
* directory for more details.
*/
/**
* @ingroup cpu_esp8266
* @ingroup drivers_periph_i2c
* @{
*
* @file
* @brief Low-level I2C driver implementation using ESP8266 SDK
*
* @author Gunar Schorcht <gunar@schorcht.net>
*
* @}
*/
/*
PLEASE NOTE:
Some parts of the implementation bases on the bit-banging implementation as
described in [wikipedia](https://en.wikipedia.org/wiki/I%C2%B2C) as well as
its implementation in [esp-open-rtos](https://github.com/SuperHouse/esp-open-rtos.git).
These parts are under the copyright of their respective owners.
*/
#define ENABLE_DEBUG (0)
#include "debug.h"
#include <stdbool.h>
#include <errno.h>
#include "cpu.h"
#include "log.h"
#include "mutex.h"
#include "periph_conf.h"
#include "periph/gpio.h"
#include "periph/i2c.h"
#include "common.h"
#include "esp/gpio_regs.h"
#include "sdk/ets.h"
#if defined(I2C_NUMOF) && I2C_NUMOF > 0
/* has to be declared as extern since it is not possible to include */
/* user_interface.h due to conflicts with gpio_init */
extern uint8_t system_get_cpu_freq(void);
extern bool system_update_cpu_freq(uint8_t freq);
/* max clock stretching counter (ca. 10 ms) */
#define I2C_CLOCK_STRETCH 40000
typedef struct
{
i2c_speed_t speed;
i2c_t dev;
bool started;
gpio_t scl;
gpio_t sda;
uint32_t scl_bit; /* gpio bit mask for faster access */
uint32_t sda_bit; /* gpio bit mask for faster access */
uint32_t delay;
} _i2c_bus_t;
static _i2c_bus_t _i2c_bus[] =
{
#if defined(I2C0_SDA) && defined(I2C0_SCL)
{
.speed = I2C0_SPEED,
.sda = I2C0_SDA,
.scl = I2C0_SCL
},
#endif
#if defined(I2C1_SDA) && defined(I2C1_SCL)
{
.speed = I2C1_SPEED,
.sda = I2C1_SDA,
.scl = I2C1_SCL
},
#endif
#if defined(I2C2_SDA) && defined(I2C2_SCL)
{
.speed = I2C2_SPEED,
.sda = I2C2_SDA,
.scl = I2C2_SCL
},
#endif
};
/* to ensure that I2C is always optimized with -O2 to use the defined delays */
#pragma GCC optimize ("O2")
static const uint32_t _i2c_delays[][2] =
{
/* values specify one half-period and are only valid for -O2 option */
/* value = [period - 0.5us(160MHz) or 1.0us(80MHz)] * cycles per second / 2 */
/* cycles per us = ca. 20 (80 MHz) / ca. 40 (160 MHz) */
[I2C_SPEED_LOW] = {1990, 989}, /* 10 kbps (period 100 us) */
[I2C_SPEED_NORMAL] = { 190, 89}, /* 100 kbps (period 10 us) */
[I2C_SPEED_FAST] = { 40, 16}, /* 400 kbps (period 2.5 us) */
[I2C_SPEED_FAST_PLUS] = { 13, 0}, /* 1 Mbps (period 1 us) */
[I2C_SPEED_HIGH] = { 0, 0} /* 3.4 Mbps (period 0.3 us) is not working */
};
static mutex_t i2c_bus_lock[I2C_NUMOF] = { MUTEX_INIT };
/* forward declaration of internal functions */
static inline void _i2c_delay (_i2c_bus_t* bus);
static inline bool _i2c_scl_read (_i2c_bus_t* bus);
static inline bool _i2c_sda_read (_i2c_bus_t* bus);
static inline void _i2c_scl_high (_i2c_bus_t* bus);
static inline void _i2c_scl_low (_i2c_bus_t* bus);
static inline void _i2c_sda_high (_i2c_bus_t* bus);
static inline void _i2c_sda_low (_i2c_bus_t* bus);
static int _i2c_start_cond (_i2c_bus_t* bus);
static int _i2c_stop_cond (_i2c_bus_t* bus);
static int _i2c_write_bit (_i2c_bus_t* bus, bool bit);
static int _i2c_read_bit (_i2c_bus_t* bus, bool* bit);
static int _i2c_write_byte (_i2c_bus_t* bus, uint8_t byte);
static int _i2c_read_byte (_i2c_bus_t* bus, uint8_t* byte, bool ack);
static int _i2c_arbitration_lost (_i2c_bus_t* bus, const char* func);
static void _i2c_abort (_i2c_bus_t* bus, const char* func);
static void _i2c_clear (_i2c_bus_t* bus);
/* implementation of i2c interface */
void i2c_init(i2c_t dev)
{
if (I2C_NUMOF != sizeof(_i2c_bus)/sizeof(_i2c_bus_t)) {
LOG_INFO("I2C_NUMOF does not match number of I2C_SDA_x/I2C_SCL_x definitions\n");
LOG_INFO("Please check your board configuration in 'board.h'\n");
assert(I2C_NUMOF < sizeof(_i2c_bus)/sizeof(_i2c_bus_t));
return;
}
CHECK_PARAM (dev < I2C_NUMOF)
if (_i2c_bus[dev].speed == I2C_SPEED_HIGH) {
LOG_INFO("I2C_SPEED_HIGH is not supported\n");
return;
}
i2c_acquire (dev);
_i2c_bus[dev].dev = dev;
_i2c_bus[dev].delay =_i2c_delays[_i2c_bus[dev].speed][ets_get_cpu_frequency() == 80 ? 1 : 0];
_i2c_bus[dev].scl_bit = BIT(_i2c_bus[dev].scl); /* store bit mask for faster access */
_i2c_bus[dev].sda_bit = BIT(_i2c_bus[dev].sda); /* store bit mask for faster access */
_i2c_bus[dev].started = false; /* for handling of repeated start condition */
DEBUG ("%s: scl=%d sda=%d speed=%d\n", __func__,
_i2c_bus[dev].scl, _i2c_bus[dev].sda, _i2c_bus[dev].speed);
/*
* Configure and initialize SDA and SCL pin.
* Note: Due to critical timing required by the I2C software
* implementation, the ESP8266 GPIOs can not be used directly in GPIO_OD_PU
* mode. Instead, the GPIOs are configured in GPIO_IN_PU mode with
* open-drain output driver. Signal levels are then realized as following:
*
* - HIGH: The GPIO is used in the configured GPIO_IN_PU mode. In this
* mode, the output driver is in open-drain mode and pulled-up.
* - LOW : The GPIO is temporarily switched to GPIO_OD_PU mode. In this
* mode, the output value 0, which is written during
* initialization, actively drives the output to low.
*/
gpio_init (_i2c_bus[dev].scl, GPIO_IN_PU);
gpio_init (_i2c_bus[dev].sda, GPIO_IN_PU);
gpio_clear (_i2c_bus[dev].scl);
gpio_clear (_i2c_bus[dev].sda);
/* set SDA and SCL to be floating and pulled-up to high */
_i2c_sda_high (&_i2c_bus[dev]);
_i2c_scl_high (&_i2c_bus[dev]);
/* clear the bus if necessary (SDA is driven permanently low) */
_i2c_clear (&_i2c_bus[dev]);
i2c_release (dev);
return;
}
int i2c_acquire(i2c_t dev)
{
CHECK_PARAM_RET (dev < I2C_NUMOF, -1)
mutex_lock(&i2c_bus_lock[dev]);
return 0;
}
int i2c_release(i2c_t dev)
{
CHECK_PARAM_RET (dev < I2C_NUMOF, -1)
mutex_unlock(&i2c_bus_lock[dev]);
return 0;
}
int /* IRAM */ i2c_read_bytes(i2c_t dev, uint16_t addr, void *data, size_t len, uint8_t flags)
{
DEBUG ("%s: dev=%u addr=%02x data=%p len=%d flags=%01x\n",
__func__, dev, addr, data, len, flags);
CHECK_PARAM_RET (dev < I2C_NUMOF, -EINVAL);
CHECK_PARAM_RET (len > 0, -EINVAL);
CHECK_PARAM_RET (data != NULL, -EINVAL);
_i2c_bus_t* bus = &_i2c_bus[dev];
int res = 0;
/* send START condition and address if I2C_NOSTART is not set */
if (!(flags & I2C_NOSTART)) {
/* START condition */
if ((res = _i2c_start_cond (bus)) != 0) {
return res;
}
/* send 10 bit or 7 bit address */
if (flags & I2C_ADDR10) {
/* prepare 10 bit address bytes */
uint8_t addr1 = 0xf0 | (addr & 0x0300) >> 7 | I2C_READ;
uint8_t addr2 = addr & 0xff;
/* send address bytes wit read flag */
if ((res = _i2c_write_byte (bus, addr1)) != 0 ||
(res = _i2c_write_byte (bus, addr2)) != 0) {
/* abort transfer */
_i2c_abort (bus, __func__);
return res;
}
}
else {
/* send address byte with read flag */
if ((res = _i2c_write_byte (bus, (addr << 1 | I2C_READ))) != 0) {
/* abort transfer */
_i2c_abort (bus, __func__);
return res;
}
}
}
/* receive bytes if send address was successful */
for (unsigned int i = 0; i < len; i++) {
if ((res = _i2c_read_byte (bus, &(((uint8_t*)data)[i]), i < len-1)) != 0) {
/* abort transfer */
_i2c_abort (bus, __func__);
return res;
}
}
/* send STOP condition if I2C_NOSTOP flag is not set */
if (!(flags & I2C_NOSTOP)) {
res = _i2c_stop_cond (bus);
}
return res;
}
int /* IRAM */ i2c_write_bytes(i2c_t dev, uint16_t addr, const void *data, size_t len, uint8_t flags)
{
DEBUG ("%s: dev=%u addr=%02x data=%p len=%d flags=%01x\n",
__func__, dev, addr, data, len, flags);
CHECK_PARAM_RET (dev < I2C_NUMOF, -EINVAL);
CHECK_PARAM_RET (len > 0, -EINVAL);
CHECK_PARAM_RET (data != NULL, -EINVAL);
_i2c_bus_t* bus = &_i2c_bus[dev];
int res = 0;
/* if I2C_NOSTART is not set, send START condition and ADDR */
if (!(flags & I2C_NOSTART)) {
/* START condition */
if ((res = _i2c_start_cond (bus)) != 0) {
return res;
}
/* send 10 bit or 7 bit address */
if (flags & I2C_ADDR10) {
/* prepare 10 bit address bytes */
uint8_t addr1 = 0xf0 | (addr & 0x0300) >> 7;
uint8_t addr2 = addr & 0xff;
/* send address bytes without read flag */
if ((res = _i2c_write_byte (bus, addr1)) != 0 ||
(res = _i2c_write_byte (bus, addr2)) != 0) {
/* abort transfer */
_i2c_abort (bus, __func__);
return res;
}
}
else {
/* send address byte without read flag */
if ((res = _i2c_write_byte (bus, addr << 1)) != 0) {
/* abort transfer */
_i2c_abort (bus, __func__);
return res;
}
}
}
/* send bytes if send address was successful */
for (unsigned int i = 0; i < len; i++) {
if ((res = _i2c_write_byte (bus, ((uint8_t*)data)[i])) != 0) {
/* abort transfer */
_i2c_abort (bus, __func__);
return res;
}
}
/* send STOP condition if I2C_NOSTOP flag is not set */
if (!(flags & I2C_NOSTOP)) {
res = _i2c_stop_cond (bus);
}
return res;
}
void i2c_poweron(i2c_t dev)
{
/* since I2C is realized in software there is no device to power on */
/* just return */
}
void i2c_poweroff(i2c_t dev)
{
/* since I2C is realized in software there is no device to power off */
/* just return */
}
/* --- internal functions --- */
static inline void _i2c_delay (_i2c_bus_t* bus)
{
/* produces a delay */
/* ca. 20 cycles = 1 us (80 MHz) or ca. 40 cycles = 1 us (160 MHz) */
uint32_t cycles = bus->delay;
if (cycles) {
__asm__ volatile ("1: _addi.n %0, %0, -1 \n"
" bnez %0, 1b \n" : "=r" (cycles) : "0" (cycles));
}
}
/*
* Note: Due to critical timing required by the I2C software implementation,
* the ESP8266 GPIOs can not be used directly in GPIO_OD_PU mode. Instead,
* the GPIOs are configured in GPIO_IN_PU mode with open-drain output driver.
* Signal levels are then realized as following:
*
* - HIGH: The GPIO is used in the configured GPIO_IN_PU mode. In this mode,
* the output driver is in open-drain mode and pulled-up.
* - LOW : The GPIO is temporarily switched to GPIO_OD_PU mode. In this mode,
* the output value 0, which is written during initialization,
* actively drives the output to low.
*/
static inline bool _i2c_scl_read(_i2c_bus_t* bus)
{
/* read SCL status */
return GPIO.IN & bus->scl_bit;
}
static inline bool _i2c_sda_read(_i2c_bus_t* bus)
{
/* read SDA status */
return GPIO.IN & bus->sda_bit;
}
static inline void _i2c_scl_low(_i2c_bus_t* bus)
{
/*
* set SCL signal low (switch temporarily to GPIO_OD_PU where the
* written output value 0 drives the pin actively to low)
*/
GPIO.ENABLE_OUT_SET = bus->scl_bit;
}
static inline void _i2c_scl_high(_i2c_bus_t* bus)
{
/*
* set SCL signal high (switch back to GPIO_IN_PU mode, that is the pin is
* in open-drain mode and pulled-up to high)
*/
GPIO.ENABLE_OUT_CLEAR = bus->scl_bit;
}
static inline void _i2c_sda_low(_i2c_bus_t* bus)
{
/*
* set SDA signal low (switch temporarily to GPIO_OD_PU where the
* written output value 0 drives the pin actively to low)
*/
GPIO.ENABLE_OUT_SET = bus->sda_bit;
}
static inline void _i2c_sda_high(_i2c_bus_t* bus)
{
/*
* set SDA signal high (switch back to GPIO_IN_PU mode, that is the pin is
* in open-drain mode and pulled-up to high)
*/
GPIO.ENABLE_OUT_CLEAR = bus->sda_bit;
}
static void _i2c_clear(_i2c_bus_t* bus)
{
DEBUG("%s: dev=%u\n", __func__, bus->dev);
/**
* Sometimes a slave blocks and drives the SDA line permanently low.
* Send some clock pulses in that case (10 at maximum)
*/
/*
* If SDA is low while SCL is high for 10 half cycles, it is not an
* arbitration lost but a bus lock.
*/
int count = 10;
while (!_i2c_sda_read (bus) && _i2c_scl_read (bus) && count) {
count--;
_i2c_delay (bus);
}
if (count) {
/* was not a bus lock */
return;
}
/* send 10 clock pulses in case of bus lock */
count = 10;
while (!_i2c_sda_read (bus) && count--) {
_i2c_scl_low (bus);
_i2c_delay (bus);
_i2c_scl_high (bus);
_i2c_delay (bus);
}
}
static void _i2c_abort(_i2c_bus_t* bus, const char* func)
{
DEBUG("%s: dev=%u\n", func, bus->dev);
/* reset SCL and SDA to passive HIGH (floating and pulled-up) */
_i2c_sda_high (bus);
_i2c_scl_high (bus);
/* reset repeated start indicator */
bus->started = false;
/* clear the bus if necessary (SDA is driven permanently low) */
_i2c_clear(bus);
}
static /* IRAM */ int _i2c_arbitration_lost (_i2c_bus_t* bus, const char* func)
{
DEBUG("%s: arbitration lost dev=%u\n", func, bus->dev);
/* reset SCL and SDA to passive HIGH (floating and pulled-up) */
_i2c_sda_high (bus);
_i2c_scl_high (bus);
/* reset repeated start indicator */
bus->started = false;
/* clear the bus if necessary (SDA is driven permanently low) */
_i2c_clear(bus);
return -EAGAIN;
}
static /* IRAM */ int _i2c_start_cond(_i2c_bus_t* bus)
{
/*
* send start condition
* on entry: SDA and SCL are set to be floating and pulled-up to high
* on exit : SDA and SCL are actively driven to low
*/
int res = 0;
if (bus->started) {
/* prepare the repeated start condition */
/* SDA = passive HIGH (floating and pulled-up) */
_i2c_sda_high (bus);
/* t_VD;DAT not neccessary */
/* _i2c_delay (bus); */
/* SCL = passive HIGH (floating and pulled-up) */
_i2c_scl_high (bus);
/* clock stretching, wait as long as clock is driven to low by the slave */
uint32_t stretch = I2C_CLOCK_STRETCH;
while (stretch && !_i2c_scl_read (bus)) {
stretch--;
}
if (stretch == 0) {
DEBUG("%s: clock stretching timeout dev=%u\n", __func__, bus->dev);
res = -ETIMEDOUT;
}
/* wait t_SU;STA - set-up time for a repeated START condition */
/* min. in us: 4.7 (SM), 0.6 (FM), 0.26 (FPM), 0.16 (HSM); no max. */
_i2c_delay (bus);
}
/* if SDA is low, arbitration is lost and someone else is driving the bus */
if (!_i2c_sda_read (bus)) {
return _i2c_arbitration_lost (bus, __func__);
}
/* begin the START condition: SDA = active LOW */
_i2c_sda_low (bus);
/* wait t_HD;STA - hold time (repeated) START condition, */
/* max none */
/* min 4.0 us (SM), 0.6 us (FM), 0.26 us (FPM), 0.16 us (HSM) */
_i2c_delay (bus);
/* complete the START condition: SCL = active LOW */
_i2c_scl_low (bus);
/* needed for repeated start condition */
bus->started = true;
return res;
}
static /* IRAM */ int _i2c_stop_cond(_i2c_bus_t* bus)
{
/*
* send stop condition
* on entry: SCL is active low and SDA can be changed
* on exit : SCL and SDA are set to be floating and pulled-up to high
*/
int res = 0;
/* begin the STOP condition: SDA = active LOW */
_i2c_sda_low (bus);
/* wait t_LOW - LOW period of SCL clock */
/* min. in us: 4.7 (SM), 1.3 (FM), 0.5 (FPM), 0.16 (HSM); no max. */
_i2c_delay (bus);
/* SCL = passive HIGH (floating and pulled up) while SDA = active LOW */
_i2c_scl_high (bus);
/* clock stretching, wait as long as clock is driven to low by the slave */
uint32_t stretch = I2C_CLOCK_STRETCH;
while (stretch && !_i2c_scl_read (bus)) {
stretch--;
}
if (stretch == 0) {
DEBUG("%s: clock stretching timeout dev=%u\n", __func__, bus->dev);
res = -ETIMEDOUT;
}
/* wait t_SU;STO - hold time STOP condition, */
/* min. in us: 4.0 (SM), 0.6 (FM), 0.26 (FPM), 0.16 (HSM); no max. */
_i2c_delay (bus);
/* complete the STOP condition: SDA = passive HIGH (floating and pulled up) */
_i2c_sda_high (bus);
/* reset repeated start indicator */
bus->started = false;
/* wait t_BUF - bus free time between a STOP and a START condition */
/* min. in us: 4.7 (SM), 1.3 (FM), 0.5 (FPM), 0.16 (HSM); no max. */
_i2c_delay (bus);
/* one additional delay */
_i2c_delay (bus);
/* if SDA is low, arbitration is lost and someone else is driving the bus */
if (_i2c_sda_read (bus) == 0) {
return _i2c_arbitration_lost (bus, __func__);
}
return res;
}
static /* IRAM */ int _i2c_write_bit (_i2c_bus_t* bus, bool bit)
{
/*
* send one bit
* on entry: SCL is active low, SDA can be changed
* on exit : SCL is active low, SDA can be changed
*/
int res = 0;
/* SDA = bit */
if (bit) {
_i2c_sda_high (bus);
}
else {
_i2c_sda_low (bus);
}
/* wait t_VD;DAT - data valid time (time until data are valid) */
/* max. in us: 3.45 (SM), 0.9 (FM), 0.45 (FPM); no min */
_i2c_delay (bus);
/* SCL = passive HIGH (floating and pulled-up), SDA value is available */
_i2c_scl_high (bus);
/* wait t_HIGH - time for the slave to read SDA */
/* min. in us: 4 (SM), 0.6 (FM), 0.26 (FPM), 0.09 (HSM); no max. */
_i2c_delay (bus);
/* clock stretching, wait as long as clock is driven low by the slave */
uint32_t stretch = I2C_CLOCK_STRETCH;
while (stretch && !_i2c_scl_read (bus)) {
stretch--;
}
if (stretch == 0) {
DEBUG("%s: clock stretching timeout dev=%u\n", __func__, bus->dev);
res = -ETIMEDOUT;
}
/* if SCL is high, now data is valid */
/* if SDA is high, check that nobody else is driving SDA low */
if (bit && !_i2c_sda_read(bus)) {
return _i2c_arbitration_lost (bus, __func__);
}
/* SCL = active LOW to allow next SDA change */
_i2c_scl_low(bus);
return res;
}
static /* IRAM */ int _i2c_read_bit (_i2c_bus_t* bus, bool* bit)
{
/* read one bit
* on entry: SCL is active low, SDA can be changed
* on exit : SCL is active low, SDA can be changed
*/
int res = 0;
/* SDA = passive HIGH (floating and pulled-up) to let the slave drive data */
_i2c_sda_high (bus);
/* wait t_VD;DAT - data valid time (time until data are valid) */
/* max. in us: 3.45 (SM), 0.9 (FM), 0.45 (FPM); no min */
_i2c_delay (bus);
/* SCL = passive HIGH (floating and pulled-up), SDA value is available */
_i2c_scl_high (bus);
/* clock stretching, wait as long as clock is driven to low by the slave */
uint32_t stretch = I2C_CLOCK_STRETCH;
while (stretch && !_i2c_scl_read (bus)) {
stretch--;
}
if (stretch == 0) {
DEBUG("%s: clock stretching timeout dev=%u\n", __func__, bus->dev);
res = -ETIMEDOUT;
}
/* wait t_HIGH - time for the slave to read SDA */
/* min. in us: 4 (SM), 0.6 (FM), 0.26 (FPM), 0.09 (HSM); no max. */
_i2c_delay (bus);
/* SCL is high, read out bit */
*bit = _i2c_sda_read (bus);
/* SCL = active LOW to allow next SDA change */
_i2c_scl_low(bus);
return res;
}
static /* IRAM */ int _i2c_write_byte (_i2c_bus_t* bus, uint8_t byte)
{
/* send one byte and returns 0 in case of ACK from slave */
/* send the byte from MSB to LSB */
for (unsigned i = 0; i < 8; i++) {
int res = _i2c_write_bit(bus, (byte & 0x80) != 0);
if (res != 0) {
return res;
}
byte = byte << 1;
}
/* read acknowledge bit (low) from slave */
bool bit;
int res = _i2c_read_bit (bus, &bit);
if (res != 0) {
return res;
}
return !bit ? 0 : -EIO;
}
static /* IRAM */ int _i2c_read_byte(_i2c_bus_t* bus, uint8_t *byte, bool ack)
{
bool bit;
/* read the byte */
for (unsigned i = 0; i < 8; i++) {
int res = _i2c_read_bit (bus, &bit);
if (res != 0) {
return res;
}
*byte = (*byte << 1) | bit;
}
/* write acknowledgement flag */
_i2c_write_bit(bus, !ack);
return 0;
}
void i2c_print_config(void)
{
for (unsigned bus = 0; bus < I2C_NUMOF; bus++) {
LOG_INFO("\tI2C_DEV(%d): scl=%d sda=%d\n",
bus, _i2c_bus[bus].scl, _i2c_bus[bus].sda);
}
}
#else /* if defined(I2C_NUMOF) && I2C_NUMOF */
void i2c_print_config(void)
{
LOG_INFO("\tI2C: no devices\n");
}
#endif /* if defined(I2C_NUMOF) && I2C_NUMOF */