1
0
mirror of https://github.com/RIOT-OS/RIOT.git synced 2025-01-18 12:52:44 +01:00
RIOT/cpu/sam0_common/periph/timer.c
2020-05-28 17:37:42 +02:00

396 lines
8.5 KiB
C

/*
* Copyright (C) 2019 ML!PA Consulting GmbH
*
*
* This file is subject to the terms and conditions of the GNU Lesser
* General Public License v2.1. See the file LICENSE in the top level
* directory for more details.
*/
/**
* @ingroup cpu_sam0_common
* @ingroup drivers_periph_timer
* @{
*
* @file timer.c
* @brief Low-level timer driver implementation
*
* @author Benjamin Valentin <benjamin.valentin@ml-pa.com>
*
* @}
*/
#include <stdlib.h>
#include <stdio.h>
#include "board.h"
#include "cpu.h"
#include "periph/timer.h"
#include "periph_conf.h"
#define ENABLE_DEBUG (0)
#include "debug.h"
/**
* @brief Timer state memory
*/
static timer_isr_ctx_t config[TIMER_NUMOF];
static uint32_t _oneshot;
static inline void set_oneshot(tim_t tim, int chan)
{
_oneshot |= (1 << chan) << (TIMER_CHANNELS * tim);
}
static inline void clear_oneshot(tim_t tim, int chan)
{
_oneshot &= ~((1 << chan) << (TIMER_CHANNELS * tim));
}
static inline bool is_oneshot(tim_t tim, int chan)
{
return _oneshot & ((1 << chan) << (TIMER_CHANNELS * tim));
}
static inline TcCount32 *dev(tim_t tim)
{
return &timer_config[tim].dev->COUNT32;
}
static inline TcCount16 *dev16(tim_t tim)
{
return &timer_config[tim].dev->COUNT16;
}
static inline TcCount8 *dev8(tim_t tim)
{
return &timer_config[tim].dev->COUNT8;
}
static inline void wait_synchronization(tim_t tim)
{
#if defined(TC_SYNCBUSY_MASK)
/* SYNCBUSY is a register */
while ((dev(tim)->SYNCBUSY.reg) != 0) {}
#elif defined(TC_STATUS_SYNCBUSY)
/* SYNCBUSY is a bit */
while ((dev(tim)->STATUS.reg & TC_STATUS_SYNCBUSY) != 0) {}
#else
#error Unsupported device
#endif
}
/* enable timer interrupts */
static inline void _irq_enable(tim_t tim)
{
NVIC_EnableIRQ(timer_config[tim].irq);
}
static uint8_t _get_prescaler(unsigned long freq_out, unsigned long freq_in)
{
uint8_t scale = 0;
while (freq_in > freq_out) {
freq_in >>= 1;
/* after DIV16 the prescaler gets more coarse */
if (++scale > TC_CTRLA_PRESCALER_DIV16_Val) {
freq_in >>= 1;
}
}
/* fail if output frequency can't be derived from input frequency */
assert(freq_in == freq_out);
return scale;
}
/* TOP value is CC0 */
static inline void _set_mfrq(tim_t tim)
{
timer_stop(tim);
wait_synchronization(tim);
#ifdef TC_WAVE_WAVEGEN_MFRQ
dev(tim)->WAVE.reg = TC_WAVE_WAVEGEN_MFRQ;
#else
dev(tim)->CTRLA.bit.WAVEGEN = TC_CTRLA_WAVEGEN_MFRQ_Val;
#endif
timer_start(tim);
}
/* TOP value is MAX timer value */
static inline void _set_nfrq(tim_t tim)
{
timer_stop(tim);
wait_synchronization(tim);
#ifdef TC_WAVE_WAVEGEN_NFRQ
dev(tim)->WAVE.reg = TC_WAVE_WAVEGEN_NFRQ;
#else
dev(tim)->CTRLA.bit.WAVEGEN = TC_CTRLA_WAVEGEN_NFRQ_Val;
#endif
timer_start(tim);
}
/**
* @brief Setup the given timer
*/
int timer_init(tim_t tim, unsigned long freq, timer_cb_t cb, void *arg)
{
const tc32_conf_t *cfg = &timer_config[tim];
uint8_t scale = _get_prescaler(freq, sam0_gclk_freq(cfg->gclk_src));
/* make sure given device is valid */
if (tim >= TIMER_NUMOF) {
return -1;
}
/* make sure the prescaler is withing range */
if (scale > TC_CTRLA_PRESCALER_DIV1024_Val) {
DEBUG("[timer %d] scale %d is out of range\n", tim, scale);
return -1;
}
/* make sure the timer is not running */
timer_stop(tim);
sam0_gclk_enable(cfg->gclk_src);
#ifdef MCLK
GCLK->PCHCTRL[cfg->gclk_id].reg = GCLK_PCHCTRL_GEN(cfg->gclk_src) | GCLK_PCHCTRL_CHEN;
*cfg->mclk |= cfg->mclk_mask;
#else
GCLK->CLKCTRL.reg = GCLK_CLKCTRL_CLKEN | GCLK_CLKCTRL_GEN(cfg->gclk_src) | cfg->gclk_ctrl;
PM->APBCMASK.reg |= cfg->pm_mask;
#endif
/* reset the timer */
dev(tim)->CTRLA.bit.SWRST = 1;
while (dev(tim)->CTRLA.bit.SWRST) {}
dev(tim)->CTRLA.reg = cfg->flags
#ifdef TC_CTRLA_WAVEGEN_NFRQ
| TC_CTRLA_WAVEGEN_NFRQ
#endif
| TC_CTRLA_PRESCALER(scale)
| TC_CTRLA_PRESCSYNC_RESYNC;
#ifdef TC_WAVE_WAVEGEN_NFRQ
dev(tim)->WAVE.reg = TC_WAVE_WAVEGEN_NFRQ;
#endif
wait_synchronization(tim);
dev(tim)->INTENCLR.reg = TC_INTENCLR_MASK;
/* save callback */
config[tim].cb = cb;
config[tim].arg = arg;
timer_start(tim);
/* enable interrupts for given timer */
_irq_enable(tim);
return 0;
}
static void _set_cc(tim_t tim, int cc, unsigned int value)
{
const uint16_t flags = timer_config[tim].flags;
if (flags & TC_CTRLA_MODE_COUNT32) {
dev(tim)->CC[cc].reg = value;
return;
}
if (flags & TC_CTRLA_MODE_COUNT8) {
dev8(tim)->CC[cc].reg = value;
return;
}
/* 16 bit is the default */
dev16(tim)->CC[cc].reg = value;
}
int timer_set_absolute(tim_t tim, int channel, unsigned int value)
{
DEBUG("Setting timer %i channel %i to %i\n", tim, channel, value);
/* set timeout value */
switch (channel) {
case 0:
dev(tim)->INTFLAG.reg = TC_INTFLAG_MC0;
_set_cc(tim, 0, value);
dev(tim)->INTENSET.reg = TC_INTENSET_MC0;
break;
case 1:
dev(tim)->INTFLAG.reg = TC_INTFLAG_MC1;
_set_cc(tim, 1, value);
dev(tim)->INTENSET.reg = TC_INTENSET_MC1;
break;
default:
return -1;
}
set_oneshot(tim, channel);
return 0;
}
int timer_set_periodic(tim_t tim, int channel, unsigned int value, uint8_t flags)
{
DEBUG("Setting timer %i channel %i to %i (repeating)\n", tim, channel, value);
/* set timeout value */
switch (channel) {
case 0:
dev(tim)->INTFLAG.reg = TC_INTFLAG_MC0;
if (flags & TIM_FLAG_RESET_ON_MATCH) {
_set_mfrq(tim);
} else {
_set_nfrq(tim);
}
_set_cc(tim, 0, value);
dev(tim)->INTENSET.reg = TC_INTENSET_MC0;
break;
case 1:
/* only CC0 can be used to set TOP */
if (flags & TIM_FLAG_RESET_ON_MATCH) {
assert(0);
return -1;
}
dev(tim)->INTFLAG.reg = TC_INTFLAG_MC1;
_set_cc(tim, 1, value);
dev(tim)->INTENSET.reg = TC_INTENSET_MC1;
break;
default:
return -1;
}
if (flags & TIM_FLAG_RESET_ON_SET) {
dev(tim)->COUNT.reg = 0;
}
clear_oneshot(tim, channel);
return 0;
}
int timer_clear(tim_t tim, int channel)
{
switch (channel) {
case 0:
dev(tim)->INTFLAG.reg = TC_INTFLAG_MC0;
dev(tim)->INTENCLR.reg = TC_INTENCLR_MC0;
break;
case 1:
dev(tim)->INTFLAG.reg = TC_INTFLAG_MC1;
dev(tim)->INTENCLR.reg = TC_INTENCLR_MC1;
break;
default:
return -1;
}
return 0;
}
unsigned int timer_read(tim_t tim)
{
/* WORKAROUND to prevent being stuck there if timer not init */
if (!dev(tim)->CTRLA.bit.ENABLE) {
return 0;
}
/* request syncronisation */
#ifdef TC_CTRLBSET_CMD_READSYNC_Val
dev(tim)->CTRLBSET.reg = TC_CTRLBSET_CMD_READSYNC;
/* work around a possible hardware bug where it takes some
cycles for the timer peripheral to set the SYNCBUSY/READSYNC bit
after writing the READSYNC bit
The problem was observed on SAME54.
*/
while(dev(tim)->CTRLBSET.bit.CMD == TC_CTRLBSET_CMD_READSYNC_Val) {}
#else
dev(tim)->READREQ.reg = TC_READREQ_RREQ | TC_READREQ_ADDR(TC_COUNT32_COUNT_OFFSET);
#endif
wait_synchronization(tim);
return dev(tim)->COUNT.reg;
}
void timer_stop(tim_t tim)
{
dev(tim)->CTRLA.bit.ENABLE = 0;
}
void timer_start(tim_t tim)
{
dev(tim)->CTRLA.bit.ENABLE = 1;
}
static inline void timer_isr(tim_t tim)
{
TcCount32 *tc = dev(tim);
uint8_t status = tc->INTFLAG.reg;
/* Acknowledge all interrupts */
tc->INTFLAG.reg = status;
if ((status & TC_INTFLAG_MC0) && tc->INTENSET.bit.MC0) {
if (is_oneshot(tim, 0)) {
tc->INTENCLR.reg = TC_INTENCLR_MC0;
}
if (config[tim].cb) {
config[tim].cb(config[tim].arg, 0);
}
}
if ((status & TC_INTFLAG_MC1) && tc->INTENSET.bit.MC1) {
if (is_oneshot(tim, 1)) {
tc->INTENCLR.reg = TC_INTENCLR_MC1;
}
if (config[tim].cb) {
config[tim].cb(config[tim].arg, 1);
}
}
}
#ifdef TIMER_0_ISR
void TIMER_0_ISR(void)
{
timer_isr(0);
cortexm_isr_end();
}
#endif
#ifdef TIMER_1_ISR
void TIMER_1_ISR(void)
{
timer_isr(1);
cortexm_isr_end();
}
#endif
#ifdef TIMER_2_ISR
void TIMER_2_ISR(void)
{
timer_isr(2);
cortexm_isr_end();
}
#endif
#ifdef TIMER_3_ISR
void TIMER_3_ISR(void)
{
timer_isr(3);
cortexm_isr_end();
}
#endif