1
0
mirror of https://github.com/RIOT-OS/RIOT.git synced 2025-01-17 23:12:45 +01:00
RIOT/cpu/stm32/periph/adc_l4_wb.c
2024-07-08 11:18:57 +02:00

270 lines
7.9 KiB
C

/*
* Copyright (C) 2014-2016 Freie Universität Berlin
* Copyright (C) 2018 HAW-Hamburg
*
* This file is subject to the terms and conditions of the GNU Lesser General
* Public License v2.1. See the file LICENSE in the top level directory for more
* details.
*/
/**
* @ingroup cpu_stm32
* @ingroup drivers_periph_adc
* @{
*
* @file
* @brief Low-level ADC driver implementation
*
* @author Hauke Petersen <hauke.petersen@fu-berlin.de>
* @author Michel Rottleuthner <michel.rottleuthner@haw-hamburg.de>
*
* @}
*/
#include "cpu.h"
#include "mutex.h"
#include "periph/adc.h"
#include "periph_conf.h"
#include "periph/vbat.h"
#include "ztimer.h"
/**
* @brief Not all STM32 L4 boards have 3 ADC devices
* for example, L4R5ZI has only one ADC
*/
#if defined ADC_DEVS && ADC_DEVS == 1
#define ADC ADC1_COMMON
#endif
#if defined ADC_DEVS && ADC_DEVS == 3
#define ADC ADC123_COMMON
#endif
/**
* @brief map CPU specific register/value names valid for all STM32L4 MCUs
*/
#define ADC_CR_REG CR
#define ADC_ISR_REG ISR
#define ADC_PERIPH_CLK AHB2
/* on STM32L4xx MCUs all ADC clocks are are enabled by this bit
further clock config is possible over CKMODE[1:0] bits in ADC_CCR reg */
#define ADC_CLK_EN_MASK (RCC_AHB2ENR_ADCEN)
/* referring to Datasheet Section 6.3.18 (ADC characteristics) the minimum
achievable sampling rate is 4.21 Msps (12 Bit resolution on slow channel)
we use that worst case for configuring the sampling time to be sure it
works on all channels.
TCONV = Sampling time + 12.5 ADC clock cycles (RM section 18.4.12)
At 80MHz this means we need to set SMP to 001 (6.5 ADC clock cycles) to
stay within specs. (80000000/(6.5+12.5)) = 4210526 */
#define ADC_SMP_MIN_VAL (0x1)
/* The sampling time width is 3 bit */
#define ADC_SMP_BIT_WIDTH (3)
/* The sampling time can be specified for each channel over SMPR1 and SMPR2.
This specifies the first channel that goes to SMPR2 instead of SMPR1. */
#define ADC_SMPR2_FIRST_CHAN (10)
/**
* @brief Default VBAT undefined value
*/
#ifndef VBAT_ADC
#define VBAT_ADC ADC_UNDEF
#endif
/**
* @brief Allocate locks for all three available ADC devices
*/
static mutex_t locks[ADC_DEVS];
/* count the periph_clk_en calls to know when to disable the clock in done() */
static uint8_t _clk_en_ctr = 0;
static inline ADC_TypeDef *dev(adc_t line)
{
return (ADC_TypeDef *)(ADC1_BASE + (adc_config[line].dev << 8));
}
static inline void prep(adc_t line)
{
mutex_lock(&locks[adc_config[line].dev]);
periph_clk_en(ADC_PERIPH_CLK, ADC_CLK_EN_MASK);
_clk_en_ctr++;
}
static inline void done(adc_t line)
{
/* All ADC devices are controlled by this one bit.
* So don't disable the clock if other devices may still use it */
if (_clk_en_ctr && --_clk_en_ctr == 0) {
periph_clk_dis(ADC_PERIPH_CLK, ADC_CLK_EN_MASK);
}
mutex_unlock(&locks[adc_config[line].dev]);
}
/**
* @brief Extract the port base address from the given pin identifier
*/
static inline GPIO_TypeDef *_port(gpio_t pin)
{
return (GPIO_TypeDef *)(pin & ~(0x0f));
}
/**
* @brief Extract the pin number from the last 4 bit of the pin identifier
*/
static inline int _pin_num(gpio_t pin)
{
return (pin & 0x0f);
}
int adc_init(adc_t line)
{
/* check if the line is valid */
if (line >= ADC_NUMOF) {
return -1;
}
#if VREFBUF_ENABLE && defined(VREFBUF_CSR_ENVR)
/* enable VREFBUF if needed and available (for example if the board doesn't
* have an external reference voltage connected to V_REF+), wait until
* it is ready */
RCC->APB2ENR |= RCC_APB2ENR_SYSCFGEN;
VREFBUF->CSR &= ~VREFBUF_CSR_HIZ;
VREFBUF->CSR |= VREFBUF_CSR_ENVR;
while (!(VREFBUF->CSR & VREFBUF_CSR_VRR)) { }
#endif
/* lock device and enable its peripheral clock */
prep(line);
/* set prescaler to 0 to let the ADC run with maximum speed */
ADC->CCR &= ~(ADC_CCR_PRESC);
ADC->CCR &= ~(ADC_CCR_CKMODE);
/* Setting ADC clock to HCLK/1 is only allowed if AHB clock prescaler is 1*/
if (!(RCC->CFGR & RCC_CFGR_HPRE_3)) {
/* set ADC clock to HCLK/1 */
ADC->CCR |= (ADC_CCR_CKMODE_0);
}
else {
/* set ADC clock to HCLK/2 otherwise */
ADC->CCR |= (ADC_CCR_CKMODE_1);
}
/* configure the pin */
if (adc_config[line].pin != GPIO_UNDEF) {
gpio_init_analog(adc_config[line].pin);
}
#if defined(CPU_LINE_STM32L486xx) || defined(CPU_LINE_STM32L485xx) || \
defined(CPU_LINE_STM32L476xx) || defined(CPU_LINE_STM32L475xx) || \
defined(CPU_LINE_STM32L471xx)
/* On STM32L47xx/48xx devices, before any conversion of an input channel coming
from GPIO pads, it is necessary to configure the corresponding GPIOx_ASCR register in
the GPIO, in addition to the I/O configuration in analog mode. */
_port(adc_config[line].pin)->ASCR |= (1 << _pin_num(adc_config[line].pin));
#endif
/* init ADC line only if it wasn't already initialized */
if (!(dev(line)->ADC_CR_REG & (ADC_CR_ADEN))) {
/* reset state of bit DEEPPWD is 1 -> so first leave deep-power down mode */
dev(line)->ADC_CR_REG &= ~(ADC_CR_DEEPPWD);
/* enable ADC internal voltage regulator and wait for startup period */
dev(line)->ADC_CR_REG |= (ADC_CR_ADVREGEN);
#if IS_USED(MODULE_ZTIMER_USEC)
ztimer_sleep(ZTIMER_USEC, ADC_T_ADCVREG_STUP_US);
#else
/* to avoid using ZTIMER_USEC unless already included round up the
internal voltage regulator start up to 1ms */
ztimer_sleep(ZTIMER_MSEC, 1);
#endif
/* configure calibration for single ended input */
dev(line)->ADC_CR_REG &= ~(ADC_CR_ADCALDIF);
/* start automatic calibration and wait for it to complete */
dev(line)->ADC_CR_REG |= ADC_CR_ADCAL;
while (dev(line)->ADC_CR_REG & ADC_CR_ADCAL) {}
/* clear ADRDY by writing it*/
dev(line)->ADC_ISR_REG |= (ADC_ISR_ADRDY);
/* enable ADC and wait for it to be ready */
dev(line)->ADC_CR_REG |= (ADC_CR_ADEN);
while ((dev(line)->ADC_ISR_REG & ADC_ISR_ADRDY) == 0) {}
/* set sequence length to 1 conversion, set ADC_SQR1_L to 0 */
dev(line)->SQR1 &= ~ADC_SQR1_L_Msk;
}
/* configure sampling time for the given channel */
if (adc_config[line].chan < ADC_SMPR2_FIRST_CHAN) {
dev(line)->SMPR1 = (ADC_SMP_MIN_VAL << (adc_config[line].chan *
ADC_SMP_BIT_WIDTH));
}
else {
dev(line)->SMPR2 = (ADC_SMP_MIN_VAL << ((adc_config[line].chan -
ADC_SMPR2_FIRST_CHAN)
* ADC_SMP_BIT_WIDTH));
}
/* free the device again */
done(line);
return 0;
}
int32_t adc_sample(adc_t line, adc_res_t res)
{
int sample;
/* check if resolution is applicable */
if (res & 0x3) {
return -1;
}
/* lock and power on the ADC device */
prep(line);
/* check if this is the VBAT line */
if (IS_USED(MODULE_PERIPH_VBAT) && line == VBAT_ADC) {
vbat_enable();
}
#ifdef VREFINT_ADC
if (line == VREFINT_ADC) {
ADC->CCR |= ADC_CCR_VREFEN;
}
#endif
/* first clear resolution */
dev(line)->CFGR &= ~(ADC_CFGR_RES);
/* then set resolution to the required value*/
dev(line)->CFGR |= res;
/* specify channel for regular conversion */
dev(line)->SQR1 &= ~ADC_SQR1_SQ1_Msk;
dev(line)->SQR1 |= (adc_config[line].chan << ADC_SQR1_SQ1_Pos);
/* start conversion and wait for it to complete */
dev(line)->ADC_CR_REG |= ADC_CR_ADSTART;
while (!(dev(line)->ISR & ADC_ISR_EOC)) {}
/* read the sample */
sample = (int)dev(line)->DR;
/* check if this is the VBAT line */
if (IS_USED(MODULE_PERIPH_VBAT) && line == VBAT_ADC) {
vbat_disable();
}
#ifdef VREFINT_ADC
if (line == VREFINT_ADC) {
ADC->CCR &= ~ADC_CCR_VREFEN;
}
#endif
/* free the device again */
done(line);
return sample;
}