1
0
mirror of https://github.com/RIOT-OS/RIOT.git synced 2024-12-29 04:50:03 +01:00
RIOT/drivers/lis2dh12/lis2dh12.c
benpicco 753c833109
Merge pull request #15871 from jan-mo/feat/20210120_lis2dh12_extension
driver_lis2dh12: functionality extension
2021-03-04 15:20:55 +01:00

556 lines
14 KiB
C

/*
* Copyright (C) 2018 Freie Universität Berlin
*
* This file is subject to the terms and conditions of the GNU Lesser General
* Public License v2.1. See the file LICENSE in the top level directory for more
* details.
*/
/**
* @ingroup drivers_lis2dh12
* @{
*
* @file
* @brief LIS2DH12 accelerometer driver implementation
*
* @author Hauke Petersen <hauke.petersen@fu-berlin.de>
* @}
*/
#include "assert.h"
#include "lis2dh12.h"
#include "lis2dh12_internal.h"
#include "lis2dh12_registers.h"
#define ENABLE_DEBUG 0
#include "debug.h"
/* the following block contains the SPI mode specific adaption */
#ifdef MODULE_LIS2DH12_SPI
/* SPI bus speed and mode */
#define BUS_CLK SPI_CLK_5MHZ
#define BUS_MODE SPI_MODE_0
#define BUS_OK SPI_OK
/* shortcuts for SPI bus parameters */
#define BUS (dev->p->spi)
#define BUS_CS (dev->p->cs)
/* flag to set when reading from the device */
#define FLAG_READ (0x80)
/* flag to enable address auto incrementation on read or write */
#define FLAG_AINC (0x40)
static int _init_bus(const lis2dh12_t *dev)
{
/* for SPI, we only need to initialize the chip select pin */
if (spi_init_cs(BUS, BUS_CS) != SPI_OK) {
return LIS2DH12_NOBUS;
}
return LIS2DH12_OK;
}
static int _acquire(const lis2dh12_t *dev)
{
return spi_acquire(BUS, BUS_CS, BUS_MODE, BUS_CLK);
}
static void _release(const lis2dh12_t *dev)
{
spi_release(BUS);
}
static uint8_t _read(const lis2dh12_t *dev, uint8_t reg)
{
return spi_transfer_reg(BUS, BUS_CS, (FLAG_READ | reg), 0);
}
static void _read_burst(const lis2dh12_t *dev, uint8_t reg, void *data,
size_t len) {
spi_transfer_regs(BUS, BUS_CS, (FLAG_READ | FLAG_AINC | reg), NULL, data,
len);
}
static void _write(const lis2dh12_t *dev, uint8_t reg, uint8_t data)
{
DEBUG("[lis2dh12] write: reg 0x%02x, val 0x%02x\n", (int)reg, (int)data);
spi_transfer_reg(BUS, BUS_CS, reg, data);
}
/* and now the I2C specific part of the driver */
#else
/* I2C config */
#define BUS_OK (0)
/* I2C shortcuts */
#define BUS (dev->p->i2c)
#define ADDR (dev->p->addr)
/* flag for enabling address auto-incrementation */
#define FLAG_AINC (0x80)
static int _init_bus(const lis2dh12_t *dev)
{
(void) dev;
/* for I2C, the bus is already set up by auto_init */
return LIS2DH12_OK;
}
static int _acquire(const lis2dh12_t *dev)
{
return i2c_acquire(BUS);
}
static void _release(const lis2dh12_t *dev)
{
i2c_release(BUS);
}
static uint8_t _read(const lis2dh12_t *dev, uint8_t reg)
{
uint8_t tmp;
i2c_read_reg(BUS, ADDR, reg, &tmp, 0);
return tmp;
}
static void _read_burst(const lis2dh12_t *dev, uint8_t reg,
void *data, size_t len)
{
i2c_read_regs(BUS, ADDR, (FLAG_AINC | reg), data, len, 0);
}
static void _write(const lis2dh12_t *dev, uint8_t reg, uint8_t data)
{
DEBUG("[lis2dh12] write: reg 0x%02x, val 0x%02x\n", (int)reg, (int)data);
i2c_write_reg(BUS, ADDR, reg, data, 0);
}
#endif /* MODULE_LIS2DH12_SPI */
int lis2dh12_init(lis2dh12_t *dev, const lis2dh12_params_t *params)
{
assert(dev && params);
dev->p = params;
/* calculate shift amount to convert raw acceleration data */
dev->comp = 4 - (dev->p->scale >> 4);
/* initialize the chip select line */
if (_init_bus(dev) != LIS2DH12_OK) {
DEBUG("[lis2dh12] error: unable to initialize the bus\n");
return LIS2DH12_NOBUS;
}
/* acquire the bus and verify that our parameters are valid */
if (_acquire(dev) != BUS_OK) {
DEBUG("[lis2dh12] error: unable to acquire the bus\n");
return LIS2DH12_NOBUS;
}
/* read the WHO_IM_I register to verify the connections to the device */
if (_read(dev, REG_WHO_AM_I) != WHO_AM_I_VAL) {
DEBUG("[lis2dh12] error: invalid value read from WHO_AM_I register\n");
_release(dev);
return LIS2DH12_NODEV;
}
/* enable all axes, set sampling rate and scale */
LIS2DH12_CTRL_REG1_t reg1 = {0};
reg1.bit.ODR = dev->p->rate;
reg1.bit.Xen = 1;
reg1.bit.Yen = 1;
reg1.bit.Zen = 1;
_write(dev, REG_CTRL_REG4, dev->p->scale);
_write(dev, REG_CTRL_REG1, reg1.reg);
_release(dev);
/* set powermode */
lis2dh12_set_powermode(dev, dev->p->powermode);
DEBUG("[lis2dh12] initialization successful\n");
return LIS2DH12_OK;
}
int lis2dh12_read(const lis2dh12_t *dev, int16_t *data)
{
assert(dev && data);
/* allocate 6 byte to save the 6 RAW data registers */
uint8_t raw[6];
/* read sampled data from the device */
_acquire(dev);
/* first check if valid data is available */
if ((_read(dev, REG_STATUS_REG) & LIS2DH12_STATUS_REG_ZYXDA) == 0) {
_release(dev);
return LIS2DH12_NODATA;
}
_read_burst(dev, REG_OUT_X_L, raw, 6);
_release(dev);
/* calculate the actual g-values for the x, y, and z dimension */
for (int i = 0; i < 3; i++) {
data[i] = (int16_t)((raw[i*2 + 1] << 8) | raw[i*2]) >> dev->comp;
}
return LIS2DH12_OK;
}
#ifdef MODULE_LIS2DH12_INT
int lis2dh12_set_int(const lis2dh12_t *dev, const lis2dh12_int_params_t *params, uint8_t int_line)
{
assert (int_line == LIS2DH12_INT1 || int_line == LIS2DH12_INT2);
assert (dev && params);
assert (params->cb);
_acquire(dev);
gpio_t pin = GPIO_UNDEF;
switch (int_line){
/* first interrupt line (INT1) */
case LIS2DH12_INT1:
pin = dev->p->int1_pin;
assert (gpio_is_valid(pin));
if (gpio_init_int(pin, GPIO_IN, GPIO_RISING, params->cb, params->arg)) {
return LIS2DH12_NOINT;
}
_write(dev, REG_CTRL_REG3, params->int_type);
_write(dev, REG_INT1_CFG, params->int_config);
_write(dev, REG_INT1_THS, params->int_threshold);
_write(dev, REG_INT1_DURATION, params->int_duration);
break;
/* second interrupt line (INT2) */
case LIS2DH12_INT2:
pin = dev->p->int2_pin;
assert (gpio_is_valid(pin));
if (gpio_init_int(pin, GPIO_IN, GPIO_RISING, params->cb, params->arg)) {
return LIS2DH12_NOINT;
}
_write(dev, REG_CTRL_REG6, params->int_type);
_write(dev, REG_INT2_CFG, params->int_config);
_write(dev, REG_INT2_THS, params->int_threshold);
_write(dev, REG_INT2_DURATION, params->int_duration);
break;
}
_release(dev);
return LIS2DH12_OK;
}
int lis2dh12_read_int_src(const lis2dh12_t *dev, uint8_t *data, uint8_t int_line)
{
assert(dev && data);
assert(int_line == LIS2DH12_INT1 || int_line == LIS2DH12_INT2);
_acquire(dev);
switch (int_line) {
/* first interrupt line (INT1) */
case LIS2DH12_INT1:
*data = _read(dev, REG_INT1_SRC);
break;
/* second interrupt line (INT2) */
case LIS2DH12_INT2:
*data = _read(dev, REG_INT2_SRC);
break;
}
_release(dev);
return LIS2DH12_OK;
}
#endif /* MODULE_LIS2DH12_INT */
int lis2dh12_set_fifo(const lis2dh12_t *dev, const lis2dh12_fifo_t *config) {
assert(dev && config);
LIS2DH12_CTRL_REG5_t reg5 = {0};
LIS2DH12_FIFO_CTRL_REG_t fifo_reg = {0};
if (config->FIFO_mode != LIS2DH12_FIFO_MODE_BYPASS) {
reg5.bit.FIFO_EN = 1;
}
fifo_reg.bit.TR = config->FIFO_set_INT2;
fifo_reg.bit.FM = config->FIFO_mode;
fifo_reg.bit.FTH = config->FIFO_watermark;
_acquire(dev);
_write(dev, REG_CTRL_REG5, reg5.reg);
_write(dev, REG_FIFO_CTRL_REG, fifo_reg.reg);
_release(dev);
return LIS2DH12_OK;
}
int lis2dh12_restart_fifo(const lis2dh12_t *dev) {
assert(dev);
_acquire(dev);
uint8_t reg5 = _read(dev, REG_CTRL_REG5);
LIS2DH12_FIFO_CTRL_REG_t fifo_reg = {0};
fifo_reg.reg = _read(dev, REG_FIFO_CTRL_REG);
uint8_t fifo_mode_old = fifo_reg.bit.FM;
fifo_reg.bit.FM = LIS2DH12_FIFO_MODE_BYPASS;
/* switch to Bypass mode */
_write(dev, REG_FIFO_CTRL_REG, fifo_reg.reg);
fifo_reg.bit.FM = fifo_mode_old;
_write(dev, REG_CTRL_REG5, reg5);
_write(dev, REG_FIFO_CTRL_REG, fifo_reg.reg);
_release(dev);
return LIS2DH12_OK;
}
int lis2dh12_read_fifo_src(const lis2dh12_t *dev, LIS2DH12_FIFO_SRC_REG_t *data) {
assert(dev && data);
_acquire(dev);
data->reg = _read(dev, REG_FIFO_SRC_REG);
_release(dev);
return LIS2DH12_OK;
}
uint8_t lis2dh12_read_fifo_data(const lis2dh12_t *dev, lis2dh12_fifo_data_t *fifo_data,
uint8_t number) {
assert(dev && fifo_data);
/* check max FIFO length */
assert(number <= 32);
_acquire(dev);
/* check if number is available */
LIS2DH12_FIFO_SRC_REG_t src_reg = {0};
src_reg.reg = _read(dev, REG_FIFO_SRC_REG);
if (src_reg.bit.FSS <= number) {
number = src_reg.bit.FSS;
}
if (src_reg.bit.EMPTY) {
return 0;
}
/* calculate X, Y and Z values */
for (uint8_t i = 0; i < number; i++){
fifo_data[i].X_AXIS = (int16_t)(_read(dev, REG_OUT_X_L) | (_read(dev, REG_OUT_X_H) << 8))
>> dev->comp;
fifo_data[i].Y_AXIS = (int16_t)(_read(dev, REG_OUT_Y_L) | (_read(dev, REG_OUT_Y_H) << 8))
>> dev->comp;
fifo_data[i].Z_AXIS = (int16_t)(_read(dev, REG_OUT_Z_L) | (_read(dev, REG_OUT_Z_H) << 8))
>> dev->comp;
}
_release(dev);
return number;
}
int lis2dh12_clear_data(const lis2dh12_t *dev) {
assert(dev);
LIS2DH12_CTRL_REG5_t ctrl_reg5 = {0};
ctrl_reg5.bit.BOOT = 1;
_acquire(dev);
_write(dev, REG_CTRL_REG5, ctrl_reg5.reg);
_release(dev);
return LIS2DH12_OK;
}
int lis2dh12_set_reference(const lis2dh12_t *dev, uint8_t reference) {
assert(dev);
_acquire(dev);
_write(dev, REG_REFERENCE, reference);
_release(dev);
return LIS2DH12_OK;
}
int lis2dh12_read_reference(const lis2dh12_t *dev, uint8_t *data) {
assert(dev);
_acquire(dev);
*data = _read(dev, REG_REFERENCE);
_release(dev);
return LIS2DH12_OK;
}
int lis2dh12_set_highpass(const lis2dh12_t *dev, const lis2dh12_highpass_t *config) {
assert(dev && config);
LIS2DH12_CTRL_REG2_t data = {0};
data.bit.HPM = config->Highpass_mode;
data.bit.HPCF = config->Highpass_freq;
data.bit.FDS = config->DATA_OUT_enable;
data.bit.HP_IA1 = config->INT1_enable;
data.bit.HP_IA2 = config->INT2_enable;
data.bit.HPCLICK = config->CLICK_enable;
_acquire(dev);
_write(dev, REG_CTRL_REG2, data.reg);
_release(dev);
return LIS2DH12_OK;
}
int lis2dh12_set_click(const lis2dh12_t *dev, const lis2dh12_click_t *config) {
assert(dev);
LIS2DH12_CLICK_CFG_t click_CFG = {0};
if (config->enable_DOUBLE) {
click_CFG.bit.XD = config->enable_X_CLICK;
click_CFG.bit.YD = config->enable_Y_CLICK;
click_CFG.bit.ZD = config->enable_Z_CLICK;
}
else {
click_CFG.bit.XS = config->enable_X_CLICK;
click_CFG.bit.YS = config->enable_Y_CLICK;
click_CFG.bit.ZS = config->enable_Z_CLICK;
}
LIS2DH12_CLICK_THS_t click_thold = {0};
click_thold.bit.LIR_CLICK = config->noINT_latency;
click_thold.bit.THS = config->CLICK_thold;
_acquire(dev);
_write(dev, REG_CLICK_CFG, click_CFG.reg);
_write(dev, REG_CLICK_THS, click_thold.reg);
_write(dev, REG_TIME_LIMIT, config->TIME_limit);
_write(dev, REG_TIME_LATENCY, config->TIME_latency);
_write(dev, REG_TIME_WINDOW, config->TIME_window);
_release(dev);
return LIS2DH12_OK;
}
int lis2dh12_read_click_src(const lis2dh12_t *dev, LIS2DH12_CLICK_SRC_t *data) {
assert(dev && data);
_acquire(dev);
data->reg = _read(dev, REG_CLICK_SRC);
_release(dev);
return LIS2DH12_OK;
}
int lis2dh12_set_powermode(const lis2dh12_t *dev, lis2dh12_powermode_t powermode) {
assert(dev);
LIS2DH12_CTRL_REG1_t reg1 = {0};
LIS2DH12_CTRL_REG4_t reg4 = {0};
_acquire(dev);
reg1.reg = _read(dev, REG_CTRL_REG1);
reg4.reg = _read(dev, REG_CTRL_REG4);
/* set power mode */
if (powermode == LIS2DH12_POWER_LOW) {
reg1.bit.LPen = 1;
reg4.bit.HR = 0;
}
else if (powermode == LIS2DH12_POWER_HIGH) {
reg1.bit.LPen = 0;
reg4.bit.HR = 1;
}
else if (powermode == LIS2DH12_POWER_NORMAL) {
reg1.bit.LPen = 0;
reg4.bit.HR = 0;
}
else { /* power down mode */
reg1.bit.ODR = 0;
}
_write(dev, REG_CTRL_REG1, reg1.reg);
_write(dev, REG_CTRL_REG4, reg4.reg);
_release(dev);
return LIS2DH12_OK;
}
int lis2dh12_set_datarate(const lis2dh12_t *dev, lis2dh12_rate_t rate) {
assert(dev);
assert(rate <= 0x9);
LIS2DH12_CTRL_REG1_t reg1 = {0};
_acquire(dev);
reg1.reg = _read(dev, REG_CTRL_REG1);
reg1.bit.ODR = rate;
_write(dev, REG_CTRL_REG1, reg1.reg);
_release(dev);
return LIS2DH12_OK;
}
int lis2dh12_set_scale(lis2dh12_t *dev, lis2dh12_scale_t scale) {
assert(dev);
assert((scale>>4) <= 0x3);
LIS2DH12_CTRL_REG4_t reg4 = {0};
_acquire(dev);
reg4.reg = _read(dev, REG_CTRL_REG4);
reg4.bit.FS = scale >> 4;
_write(dev, REG_CTRL_REG4, reg4.reg);
_release(dev);
dev->comp = 4 - (scale >> 4);
return LIS2DH12_OK;
}
int lis2dh12_poweron(const lis2dh12_t *dev)
{
assert(dev);
/* set default param values */
lis2dh12_set_datarate(dev, dev->p->rate);
lis2dh12_set_powermode(dev, dev->p->powermode);
return LIS2DH12_OK;
}
int lis2dh12_poweroff(const lis2dh12_t *dev)
{
assert(dev);
/* set datarate to zero */
lis2dh12_set_datarate(dev, 0);
return LIS2DH12_OK;
}