1
0
mirror of https://github.com/RIOT-OS/RIOT.git synced 2024-12-29 04:50:03 +01:00
RIOT/cpu/stm32f0/periph/uart.c
2015-09-18 12:10:17 +02:00

274 lines
6.0 KiB
C

/*
* Copyright (C) 2014 Freie Universität Berlin
*
* This file is subject to the terms and conditions of the GNU Lesser General
* Public License v2.1. See the file LICENSE in the top level directory for more
* details.
*/
/**
* @ingroup cpu_stm32f0
* @{
*
* @file
* @brief Low-level UART driver implementation
*
* @author Hauke Petersen <hauke.petersen@fu-berlin.de>
*
* @}
*/
#include "cpu.h"
#include "board.h"
#include "sched.h"
#include "thread.h"
#include "periph_conf.h"
#include "periph/uart.h"
/* guard file in case no UART device was specified */
#if UART_NUMOF
/**
* @brief Each UART device has to store two callbacks.
*/
typedef struct {
uart_rx_cb_t rx_cb;
uart_tx_cb_t tx_cb;
void *arg;
} uart_conf_t;
/**
* @brief Unified interrupt handler for all UART devices
*
* @param uartnum the number of the UART that triggered the ISR
* @param uart the UART device that triggered the ISR
*/
static inline void irq_handler(uart_t uartnum, USART_TypeDef *uart);
/**
* @brief Allocate memory to store the callback functions.
*/
static uart_conf_t uart_config[UART_NUMOF];
static USART_TypeDef *const uart_port[UART_NUMOF] = {
#if UART_0_EN
[UART_0] = UART_0_DEV,
#endif
#if UART_1_EN
[UART_1] = UART_1_DEV,
#endif
};
int uart_init(uart_t uart, uint32_t baudrate, uart_rx_cb_t rx_cb, uart_tx_cb_t tx_cb, void *arg)
{
int res;
/* initialize UART in blocking mode first */
res = uart_init_blocking(uart, baudrate);
if (res < 0) {
return res;
}
/* enable global interrupt and configure the interrupts priority */
switch (uart) {
#if UART_0_EN
case UART_0:
NVIC_SetPriority(UART_0_IRQ, UART_IRQ_PRIO);
NVIC_EnableIRQ(UART_0_IRQ);
UART_0_DEV->CR1 |= USART_CR1_RXNEIE;
break;
#endif
#if UART_1_EN
case UART_1:
NVIC_SetPriority(UART_1_IRQ, UART_IRQ_PRIO);
NVIC_EnableIRQ(UART_1_IRQ);
UART_1_DEV->CR1 |= USART_CR1_RXNEIE;
break;
#endif
}
/* register callbacks */
uart_config[uart].rx_cb = rx_cb;
uart_config[uart].tx_cb = tx_cb;
uart_config[uart].arg = arg;
return 0;
}
int uart_init_blocking(uart_t uart, uint32_t baudrate)
{
USART_TypeDef *dev = 0;
GPIO_TypeDef *port = 0;
uint32_t rx_pin = 0;
uint32_t tx_pin = 0;
uint8_t af = 0;
uint32_t mid;
uint16_t mantissa;
uint8_t fraction;
/* enable UART and port clocks and select devices */
switch (uart) {
#if UART_0_EN
case UART_0:
dev = UART_0_DEV;
port = UART_0_PORT;
rx_pin = UART_0_RX_PIN;
tx_pin = UART_0_TX_PIN;
af = UART_0_AF;
/* enable clocks */
UART_0_CLKEN();
UART_0_PORT_CLKEN();
break;
#endif
#if UART_1_EN
case UART_1:
dev = UART_1_DEV;
port = UART_1_PORT;
tx_pin = UART_1_TX_PIN;
rx_pin = UART_1_RX_PIN;
af = UART_1_AF;
/* enable clocks */
UART_1_CLKEN();
UART_1_PORT_CLKEN();
break;
#endif
}
/* configure RX and TX pins, set pin to use alternative function mode */
port->MODER &= ~(3 << (rx_pin * 2) | 3 << (tx_pin * 2));
port->MODER |= 2 << (rx_pin * 2) | 2 << (tx_pin * 2);
/* and assign alternative function */
if (rx_pin < 8) {
port->AFR[0] &= ~(0xf << (rx_pin * 4));
port->AFR[0] |= af << (rx_pin * 4);
}
else {
port->AFR[1] &= ~(0xf << ((rx_pin - 16) * 4));
port->AFR[1] |= af << ((rx_pin - 16) * 4);
}
if (tx_pin < 8) {
port->AFR[0] &= ~(0xf << (tx_pin * 4));
port->AFR[0] |= af << (tx_pin * 4);
}
else {
port->AFR[1] &= ~(0xf << ((tx_pin - 16) * 4));
port->AFR[1] |= af << ((tx_pin - 16) * 4);
}
/* configure UART to mode 8N1 with given baudrate */
mid = (CLOCK_CORECLOCK / baudrate);
mantissa = (uint16_t)(mid / 16);
fraction = (uint8_t)(mid - (mantissa * 16));
dev->BRR = ((mantissa & 0x0fff) << 4) | (0x0f & fraction);
/* enable receive and transmit mode */
dev->CR1 |= USART_CR1_UE | USART_CR1_TE | USART_CR1_RE;
return 0;
}
void uart_tx_begin(uart_t dev)
{
USART_TypeDef *uart = uart_port[dev];
uart->CR1 |= USART_CR1_TXEIE;
}
int uart_write(uart_t dev, char data)
{
USART_TypeDef *uart = uart_port[dev];
if (uart->ISR & USART_ISR_TXE) {
uart->TDR = (uint8_t)data;
}
return 0;
}
int uart_read_blocking(uart_t dev, char *data)
{
USART_TypeDef *uart = uart_port[dev];
while (!(uart->ISR & USART_ISR_RXNE));
*data = (char)uart->RDR;
return 1;
}
int uart_write_blocking(uart_t dev, char data)
{
USART_TypeDef *uart = uart_port[dev];
while (!(uart->ISR & USART_ISR_TXE));
uart->TDR = (uint8_t)data;
return 1;
}
void uart_poweron(uart_t uart)
{
switch (uart) {
#if UART_0_EN
case UART_0:
UART_0_CLKEN();
break;
#endif
#if UART_1_EN
case UART_1:
UART_1_CLKEN();
break;
#endif
}
}
void uart_poweroff(uart_t uart)
{
switch (uart) {
#if UART_0_EN
case UART_0:
UART_0_CLKDIS();
break;
#endif
#if UART_1_EN
case UART_1:
UART_1_CLKDIS();
break;
#endif
}
}
#if UART_0_EN
void UART_0_ISR(void)
{
irq_handler(UART_0, UART_0_DEV);
}
#endif
#if UART_1_EN
void UART_1_ISR(void)
{
irq_handler(UART_1, UART_1_DEV);
}
#endif
static inline void irq_handler(uint8_t uartnum, USART_TypeDef *dev)
{
if (dev->ISR & USART_ISR_RXNE) {
char data = (char)dev->RDR;
uart_config[uartnum].rx_cb(uart_config[uartnum].arg, data);
}
else if (dev->ISR & USART_ISR_ORE) {
/* do nothing on overrun */
dev->ICR |= USART_ICR_ORECF;
}
else if (dev->ISR & USART_ISR_TXE) {
if (uart_config[uartnum].tx_cb(uart_config[uartnum].arg) == 0) {
dev->CR1 &= ~USART_CR1_TXEIE;
}
}
if (sched_context_switch_request) {
thread_yield();
}
}
#endif /* UART_NUMOF */