mirror of
https://github.com/RIOT-OS/RIOT.git
synced 2025-01-18 12:52:44 +01:00
153 lines
3.8 KiB
C
153 lines
3.8 KiB
C
/**
|
|
* Copyright (C) 2018 Eistec AB
|
|
*
|
|
* This file is subject to the terms and conditions of the GNU Lesser
|
|
* General Public License v2.1. See the file LICENSE in the top level
|
|
* directory for more details.
|
|
*
|
|
* @ingroup sys_frac
|
|
* @{
|
|
* @file
|
|
* @brief Integer fraction function implementations
|
|
*
|
|
* @author Joakim Nohlgård <joakim.nohlgard@eistec.se>
|
|
*
|
|
* @}
|
|
*/
|
|
|
|
#include <stdint.h>
|
|
#include <stdio.h>
|
|
#include <inttypes.h>
|
|
|
|
#include "assert.h"
|
|
#include "frac.h"
|
|
#include "bitarithm.h"
|
|
|
|
#define ENABLE_DEBUG 0
|
|
#include "debug.h"
|
|
|
|
uint32_t gcd32(uint32_t u, uint32_t v)
|
|
{
|
|
/* Source: https://en.wikipedia.org/wiki/Binary_GCD_algorithm#Iterative_version_in_C */
|
|
unsigned shift;
|
|
|
|
/* GCD(0,v) == v; GCD(u,0) == u, GCD(0,0) == 0 */
|
|
if (u == 0) {
|
|
return v;
|
|
}
|
|
if (v == 0) {
|
|
return u;
|
|
}
|
|
|
|
/* Let shift := log2 K, where K is the greatest power of 2
|
|
* dividing both u and v. */
|
|
for (shift = 0; ((u | v) & 1) == 0; ++shift) {
|
|
u >>= 1;
|
|
v >>= 1;
|
|
}
|
|
|
|
/* remove all factors of 2 in u */
|
|
while ((u & 1) == 0) {
|
|
u >>= 1;
|
|
}
|
|
|
|
/* From here on, u is always odd. */
|
|
do {
|
|
/* remove all factors of 2 in v -- they are not common */
|
|
/* note: v is not zero, so while will terminate */
|
|
while ((v & 1) == 0) {
|
|
v >>= 1;
|
|
}
|
|
|
|
/* Now u and v are both odd. Swap if necessary so u <= v,
|
|
* then set v = v - u (which is even). */
|
|
if (u > v) {
|
|
/* Swap u and v */
|
|
uint32_t t = v;
|
|
v = u;
|
|
u = t;
|
|
}
|
|
|
|
v = v - u; /* Here v >= u */
|
|
} while (v != 0);
|
|
|
|
/* restore common factors of 2 */
|
|
return u << shift;
|
|
}
|
|
|
|
static uint32_t frac_long_divide(uint32_t num, uint32_t den, int *prec, uint32_t *rem)
|
|
{
|
|
/* Binary long division with adaptive number of fractional bits */
|
|
/* The result will be a Qx.y number where x is the number of bits in the
|
|
* integer part and y = 64 - x. Similar to floating point, except the result
|
|
* is unsigned, and we can only represent numbers in the range 2**-32..(2**32 - 1) */
|
|
assert(den); /* divide by zero */
|
|
|
|
uint32_t q = 0; /* Quotient */
|
|
uint64_t r = 0; /* Remainder */
|
|
if (prec) {
|
|
*prec = 0;
|
|
}
|
|
if (num == 0) {
|
|
if (rem) {
|
|
*rem = 0;
|
|
}
|
|
return 0;
|
|
}
|
|
unsigned p = bitarithm_msb(num);
|
|
int i_bits = p + 1; /* Number of integer bits in the result */
|
|
uint32_t num_mask = (1ul << p);
|
|
for (unsigned k = 0; k < (64u + p); ++k) {
|
|
r <<= 1;
|
|
q <<= 1;
|
|
if (num & num_mask) {
|
|
r |= 1;
|
|
}
|
|
num_mask >>= 1;
|
|
if (r >= den) {
|
|
r -= den;
|
|
q |= 1;
|
|
}
|
|
if (q == 0) {
|
|
--i_bits;
|
|
}
|
|
if (q & (1ul << 31u)) {
|
|
/* result register is full */
|
|
break;
|
|
}
|
|
if ((r == 0) && (num == 0)) {
|
|
/* divides evenly */
|
|
break;
|
|
}
|
|
}
|
|
if (r > 0) {
|
|
++q;
|
|
}
|
|
if (prec) {
|
|
*prec = i_bits;
|
|
}
|
|
if (rem) {
|
|
*rem = r;
|
|
}
|
|
|
|
return q;
|
|
}
|
|
|
|
void frac_init(frac_t *frac, uint32_t num, uint32_t den)
|
|
{
|
|
DEBUG("frac_init32(%p, %" PRIu32 ", %" PRIu32 ")\n", (const void *)frac, num, den);
|
|
assert(den);
|
|
/* Reduce the fraction to shortest possible form by dividing by the greatest
|
|
* common divisor */
|
|
uint32_t gcd = gcd32(num, den);
|
|
/* Divide den and num by their greatest common divisor */
|
|
den /= gcd;
|
|
num /= gcd;
|
|
int prec = 0;
|
|
uint32_t rem = 0;
|
|
frac->frac = frac_long_divide(num, den, &prec, &rem);
|
|
frac->shift = (sizeof(frac->frac) * 8) - prec;
|
|
DEBUG("frac_init32: gcd = %" PRIu32 " num = %" PRIu32 " den = %" PRIu32 " frac = 0x%08" PRIx32 " shift = %02d, rem = 0x%08" PRIx32 "\n",
|
|
gcd, num, den, frac->frac, frac->shift, rem);
|
|
}
|