1
0
mirror of https://github.com/RIOT-OS/RIOT.git synced 2024-12-29 04:50:03 +01:00
RIOT/cpu/cc2538/periph/timer.c
Marian Buschsieweke 125c892c03
drivers/periph/timer: Use uint32_t for frequency
For all currently supported platforms `unsigned long` is 32 bit in width. But
better use `uint32_t` to be safe.
2020-10-30 22:02:12 +01:00

423 lines
11 KiB
C

/*
* Copyright (C) 2014 Loci Controls Inc.
*
* This file is subject to the terms and conditions of the GNU Lesser
* General Public License v2.1. See the file LICENSE in the top level
* directory for more details.
*/
/**
* @ingroup cpu_cc2538
* @ingroup drivers_periph_timer
* @{
*
* @file
* @brief Low-level timer driver implementation for the CC2538 CPU
*
* @author Ian Martin <ian@locicontrols.com>
*
* @}
*/
#include <assert.h>
#include <stdint.h>
#include "vendor/hw_gptimer.h"
#include "vendor/hw_memmap.h"
#include "board.h"
#include "cpu.h"
#include "periph/timer.h"
#include "periph_conf.h"
#define ENABLE_DEBUG 0
#include "debug.h"
#define LOAD_VALUE_16_BIT (UINT16_MAX)
#define LOAD_VALUE_32_BIT (UINT32_MAX)
#define TIMER_A_IRQ_MASK (0x000000ff)
#define TIMER_B_IRQ_MASK (0x0000ff00)
/* GPTIMER_TnMR Bits */
#define GPTIMER_TnMR_TnMIE GPTIMER_TAMR_TAMIE
#define GPTIMER_TnMR_TnCDIR GPTIMER_TAMR_TACDIR
typedef struct {
uint16_t mask;
uint16_t flag;
} _isr_cfg_t;
static const _isr_cfg_t chn_isr_cfg[] = {
{ .mask = TIMER_A_IRQ_MASK, .flag = GPTIMER_IMR_TAMIM },
{ .mask = TIMER_B_IRQ_MASK, .flag = GPTIMER_IMR_TBMIM }
};
/**
* @brief Timer state memory
*/
static timer_isr_ctx_t isr_ctx[TIMER_NUMOF];
/* pending timer compare values TxMATCHR */
static union {
uint16_t u16[2]; /* TIMERA, TIMERB 16bit mode */
uint32_t u32; /* extended TIMERA 32bit mode */
} _set_values[TIMER_NUMOF];
/* 2 channels per timer, TIMER_NUMOF <= 4 */
static uint8_t _set_timers;
static void _set_absolute_disabled(tim_t tim, int chan, unsigned int value)
{
/* each timer can have two channels*/
_set_timers |= ((chan + 1) << (2 * tim));
if (timer_config[tim].cfg == GPTMCFG_32_BIT_TIMER) {
_set_values[tim].u32 = value;
} else {
_set_values[tim].u16[chan] = value;
}
}
static void _set_pending(tim_t tim)
{
/* create mask to get set channels of the current timer */
const unsigned ch1_msk = (1 << (2 * tim));
const unsigned ch2_msk = (2 << (2 * tim));
if (_set_timers & ch1_msk) {
_set_timers &= ~ch1_msk;
if (timer_config[tim].cfg == GPTMCFG_32_BIT_TIMER) {
timer_set_absolute(tim, 0, _set_values[tim].u32);
return;
} else {
timer_set_absolute(tim, 0, _set_values[tim].u16[0]);
}
}
if (_set_timers & ch2_msk) {
_set_timers &= ~ch2_msk;
timer_set_absolute(tim, 1, _set_values[tim].u16[1]);
}
}
/* enable timer interrupts */
static inline void _irq_enable(tim_t tim)
{
DEBUG("%s(%u)\n", __FUNCTION__, tim);
if (tim < TIMER_NUMOF) {
IRQn_Type irqn;
switch (tim) {
case 0:
irqn = GPTIMER_0A_IRQn;
break;
case 1:
irqn = GPTIMER_1A_IRQn;
break;
case 2:
irqn = GPTIMER_2A_IRQn;
break;
case 3:
irqn = GPTIMER_3A_IRQn;
break;
}
NVIC_SetPriority(irqn, TIMER_IRQ_PRIO);
NVIC_EnableIRQ(irqn);
if (timer_config[tim].chn == 2) {
irqn++;
NVIC_SetPriority(irqn, TIMER_IRQ_PRIO);
NVIC_EnableIRQ(irqn);
}
}
}
static inline void _timer_clock_enable(tim_t tim)
{
DEBUG("%s\n", __FUNCTION__);
/* enable GPT(tim) clock in active mode */
SYS_CTRL->RCGCGPT |= (1UL << tim);
/* enable GPT(tim) clock in sleep mode */
SYS_CTRL->SCGCGPT |= (1UL << tim);
/* enable GPT(tim) clock in PM0 (system clock always powered down
in PM1-3) */
SYS_CTRL->DCGCGPT |= (1UL << tim);
/* wait for the clock enabling to take effect */
while (!(SYS_CTRL->RCGCGPT & (1UL << tim)) || \
!(SYS_CTRL->SCGCGPT & (1UL << tim)) || \
!(SYS_CTRL->DCGCGPT & (1UL << tim))
) {}
/* set pending timers */
_set_pending(tim);
}
static inline void _timer_clock_disable(tim_t tim)
{
DEBUG("%s\n", __FUNCTION__);
/* gate GPT(tim) clock in active mode */
SYS_CTRL->RCGCGPT &= ~(1UL << tim);
/* gate GPT(tim) clock in sleep mode */
SYS_CTRL->SCGCGPT &= ~(1UL << tim);
/* gate GPT(tim) clock in PM0 (system clock always powered down
in PM1-3) */
SYS_CTRL->DCGCGPT &= ~(1UL << tim);
/* Wait for the clock gating to take effect */
while ((SYS_CTRL->RCGCGPT & (1UL << tim)) || \
(SYS_CTRL->SCGCGPT & (1UL << tim)) || \
(SYS_CTRL->DCGCGPT & (1UL << tim))
) {}
}
static inline cc2538_gptimer_t *dev(tim_t tim)
{
assert(tim < TIMER_NUMOF);
return ((cc2538_gptimer_t *)(GPTIMER0_BASE | (((uint32_t)tim) << 12)));
}
/**
* @brief Setup the given timer
*
*/
int timer_init(tim_t tim, uint32_t freq, timer_cb_t cb, void *arg)
{
DEBUG("%s(%u, %lu, %p, %p)\n", __FUNCTION__, tim, freq, cb, arg);
if (tim >= TIMER_NUMOF) {
return -1;
}
/* Save the callback function: */
isr_ctx[tim].cb = cb;
isr_ctx[tim].arg = arg;
/* enable timer clock in active, sleep or PM0 */
_timer_clock_enable(tim);
/* Disable this timer before configuring it: */
dev(tim)->CTL = 0;
uint32_t prescaler = 0;
uint32_t chan_mode = GPTIMER_TnMR_TnMIE | GPTIMER_PERIODIC_MODE;
/* Count down in GPTMCFG_16_BIT_TIMER so prescaler is a true prescaler */
/* Count up in GPTMCFG_32_BIT_TIMER since prescaler is irrelevant */
if (timer_config[tim].cfg == GPTMCFG_32_BIT_TIMER) {
chan_mode |= GPTIMER_TnMR_TnCDIR;
if (timer_config[tim].chn > 1) {
DEBUG("Invalid timer_config. Multiple channels are available only \
in 16-bit mode.");
return -1;
}
if (freq != sys_clock_freq()) {
DEBUG("In 32-bit mode, the GPTimer frequency must equal the system \
clock frequency (%u).\n", (unsigned)sys_clock_freq());
return -1;
}
}
else if (timer_config[tim].cfg == GPTMCFG_16_BIT_TIMER) {
prescaler = sys_clock_freq();
prescaler += freq / 2;
prescaler /= freq;
if (prescaler > 0) {
prescaler--;
}
if (prescaler > 255) {
prescaler = 255;
}
dev(tim)->TAPR = prescaler;
dev(tim)->TBPR = prescaler;
}
else {
DEBUG("timer_init: invalid timer config must be 16 or 32Bit mode!\n");
return -1;
}
dev(tim)->CFG = timer_config[tim].cfg;
/* enable and configure GPTM(tim) timer A */
dev(tim)->TAMR = chan_mode;
dev(tim)->TAILR = (timer_config[tim].cfg == GPTMCFG_32_BIT_TIMER) ?
LOAD_VALUE_32_BIT : LOAD_VALUE_16_BIT;
dev(tim)->CTL |= GPTIMER_CTL_TAEN;
if (timer_config[tim].chn > 1) {
/* Enable and configure GPTM(tim) timer B */
dev(tim)->TBMR = chan_mode;
dev(tim)->TBILR = LOAD_VALUE_16_BIT;
dev(tim)->CTL |= GPTIMER_CTL_TBEN;
}
/* Enable interrupts for given timer: */
_irq_enable(tim);
return 0;
}
int timer_set_absolute(tim_t tim, int channel, unsigned int value)
{
DEBUG("%s(%u, %u, %u)\n", __FUNCTION__, tim, channel, value);
if ((tim >= TIMER_NUMOF) || (channel >= (int)timer_config[tim].chn) ) {
return -1;
}
/* GPT timer needs to be gated to write to registers, no need to
check all xCGCGPT since they are set and unset at the same time */
bool timer_on = (SYS_CTRL->RCGCGPT & (1UL << tim));
/* if timer is stopped then set the desired timer compare values (TxMARCHR)
the next time the timer is started */
if (!timer_on) {
_set_absolute_disabled(tim, channel, value);
return 0;
}
/* clear any pending match interrupts */
dev(tim)->ICR = chn_isr_cfg[channel].flag;
if (channel == 0) {
dev(tim)->TAMATCHR = (timer_config[tim].cfg == GPTMCFG_32_BIT_TIMER) ?
value : (LOAD_VALUE_16_BIT - value);
}
else {
dev(tim)->TBMATCHR = (LOAD_VALUE_16_BIT - value);
}
dev(tim)->IMR |= chn_isr_cfg[channel].flag;
return 0;
}
int timer_clear(tim_t tim, int channel)
{
DEBUG("%s(%u, %u)\n", __FUNCTION__, tim, channel);
if ((tim >= TIMER_NUMOF) || (channel >= (int)timer_config[tim].chn)) {
return -1;
}
/* clear interrupt flags */
dev(tim)->IMR &= ~(chn_isr_cfg[channel].flag);
return 0;
}
/*
* The timer channels 1 and 2 are configured to run with the same speed and
* have the same value (they run in parallel), so only on of them is returned.
*/
unsigned int timer_read(tim_t tim)
{
DEBUG("%s(%u)\n", __FUNCTION__, tim);
if (tim >= TIMER_NUMOF) {
return 0;
}
if (timer_config[tim].cfg == GPTMCFG_32_BIT_TIMER) {
return dev(tim)->TAV;
}
else {
return LOAD_VALUE_16_BIT - (dev(tim)->TAV & 0xffff);
}
}
/*
* For stopping the counting of all channels.
*/
void timer_stop(tim_t tim)
{
DEBUG("%s(%u)\n", __FUNCTION__, tim);
_timer_clock_disable(tim);
if (tim < TIMER_NUMOF) {
if (timer_config[tim].chn == 1) {
dev(tim)->CTL &= ~GPTIMER_CTL_TAEN;
}
else if (timer_config[tim].chn == 2) {
dev(tim)->CTL &= ~(GPTIMER_CTL_TBEN | GPTIMER_CTL_TAEN);
}
}
}
void timer_start(tim_t tim)
{
DEBUG("%s(%u)\n", __FUNCTION__, tim);
_timer_clock_enable(tim);
if (tim < TIMER_NUMOF) {
if (timer_config[tim].chn == 1) {
dev(tim)->CTL |= GPTIMER_CTL_TAEN;
}
else if (timer_config[tim].chn == 2) {
dev(tim)->CTL |= GPTIMER_CTL_TBEN | GPTIMER_CTL_TAEN;
}
}
}
/**
* @brief timer interrupt handler
*
* @param[in] num GPT instance number
* @param[in] chn channel number (0=A, 1=B)
*/
static void irq_handler(tim_t tim, int channel)
{
DEBUG("%s(%u,%d)\n", __FUNCTION__, tim, channel);
assert(tim < TIMER_NUMOF);
assert(channel < (int)timer_config[tim].chn);
uint32_t mis;
/* Latch the active interrupt flags */
mis = dev(tim)->MIS & chn_isr_cfg[channel].mask;
/* Clear the latched interrupt flags */
dev(tim)->ICR = mis;
if (mis & chn_isr_cfg[channel].flag) {
/* Disable further match interrupts for this timer/channel */
dev(tim)->IMR &= ~chn_isr_cfg[channel].flag;
/* Invoke the callback function */
isr_ctx[tim].cb(isr_ctx[tim].arg, channel);
}
cortexm_isr_end();
}
void isr_timer0_chan0(void)
{
irq_handler(0, 0);
}
void isr_timer0_chan1(void)
{
irq_handler(0, 1);
}
void isr_timer1_chan0(void)
{
irq_handler(1, 0);
}
void isr_timer1_chan1(void)
{
irq_handler(1, 1);
}
void isr_timer2_chan0(void)
{
irq_handler(2, 0);
}
void isr_timer2_chan1(void)
{
irq_handler(2, 1);
}
void isr_timer3_chan0(void)
{
irq_handler(3, 0);
}
void isr_timer3_chan1(void)
{
irq_handler(3, 1);
}