1
0
mirror of https://github.com/RIOT-OS/RIOT.git synced 2025-01-18 12:52:44 +01:00
RIOT/cpu/samd21/periph/uart.c
Hauke Petersen ac6b73a35c cpu/samd21(common): cleaned up pad selection macros
- renamed uart and spi pad selection macros to consistent style
- adapted uart and spi implementation to use new names
2016-10-07 11:02:14 +02:00

191 lines
5.0 KiB
C

/*
* Copyright (C) 2015 Freie Universität Berlin
*
* This file is subject to the terms and conditions of the GNU Lesser
* General Public License v2.1. See the file LICENSE in the top level
* directory for more details.
*/
/**
* @ingroup driver_periph
* @{
*
* @file
* @brief Low-level UART driver implementation
*
* @author Thomas Eichinger <thomas.eichinger@fu-berlin.de>
* @author Troels Hoffmeyer <troels.d.hoffmeyer@gmail.com>
* @author Hauke Petersen <hauke.petersen@fu-berlin.de>
*
* @}
*/
#include "cpu.h"
#include "sched.h"
#include "thread.h"
#include "periph/uart.h"
#include "periph/gpio.h"
/**
* @brief Allocate memory to store the callback functions
*/
static uart_isr_ctx_t uart_ctx[UART_NUMOF];
/**
* @brief Get the pointer to the base register of the given UART device
*
* @param[in] dev UART device identifier
*
* @return base register address
*/
static inline SercomUsart *_uart(uart_t dev)
{
return uart_config[dev].dev;
}
static int init_base(uart_t uart, uint32_t baudrate);
int uart_init(uart_t uart, uint32_t baudrate, uart_rx_cb_t rx_cb, void *arg)
{
/* initialize basic functionality */
int res = init_base(uart, baudrate);
if (res != 0) {
return res;
}
/* register callbacks */
uart_ctx[uart].rx_cb = rx_cb;
uart_ctx[uart].arg = arg;
/* configure interrupts and enable RX interrupt */
_uart(uart)->INTENSET.reg = SERCOM_USART_INTENSET_RXC;
NVIC_EnableIRQ(SERCOM0_IRQn + _sercom_id(_uart(uart)));
return 0;
}
static int init_base(uart_t uart, uint32_t baudrate)
{
uint32_t baud;
SercomUsart *dev;
if ((unsigned int)uart >= UART_NUMOF) {
return -1;
}
/* get the devices base register */
dev = _uart(uart);
/* calculate baudrate */
baud = ((((uint32_t)CLOCK_CORECLOCK * 10) / baudrate) / 16);
/* enable sync and async clocks */
uart_poweron(uart);
/* configure pins */
gpio_init(uart_config[uart].rx_pin, GPIO_IN);
gpio_init_mux(uart_config[uart].rx_pin, uart_config[uart].mux);
gpio_init(uart_config[uart].tx_pin, GPIO_OUT);
gpio_init_mux(uart_config[uart].tx_pin, uart_config[uart].mux);
/* reset the UART device */
dev->CTRLA.reg = SERCOM_USART_CTRLA_SWRST;
while (dev->SYNCBUSY.reg & SERCOM_USART_SYNCBUSY_SWRST) {}
/* set asynchronous mode w/o parity, LSB first, TX and RX pad as specified
* by the board in the periph_conf.h, x16 sampling and use internal clock */
dev->CTRLA.reg = (SERCOM_USART_CTRLA_DORD |
SERCOM_USART_CTRLA_SAMPR(0x1) |
SERCOM_USART_CTRLA_TXPO(uart_config[uart].tx_pad) |
SERCOM_USART_CTRLA_RXPO(uart_config[uart].rx_pad) |
SERCOM_USART_CTRLA_MODE_USART_INT_CLK);
/* set baudrate */
dev->BAUD.FRAC.FP = (baud % 10);
dev->BAUD.FRAC.BAUD = (baud / 10);
/* enable receiver and transmitter, use 1 stop bit */
dev->CTRLB.reg = (SERCOM_USART_CTRLB_RXEN | SERCOM_USART_CTRLB_TXEN);
while (dev->SYNCBUSY.reg & SERCOM_USART_SYNCBUSY_CTRLB) {}
/* finally, enable the device */
dev->CTRLA.reg |= SERCOM_USART_CTRLA_ENABLE;
return 0;
}
void uart_write(uart_t uart, const uint8_t *data, size_t len)
{
for (size_t i = 0; i < len; i++) {
while (!(_uart(uart)->INTFLAG.reg & SERCOM_USART_INTFLAG_DRE)) {}
_uart(uart)->DATA.reg = data[i];
}
}
void uart_poweron(uart_t uart)
{
PM->APBCMASK.reg |= (PM_APBCMASK_SERCOM0 << _sercom_id(_uart(uart)));
GCLK->CLKCTRL.reg = (GCLK_CLKCTRL_CLKEN |
GCLK_CLKCTRL_GEN_GCLK0 |
(SERCOM0_GCLK_ID_CORE + _sercom_id(_uart(uart))) <<
GCLK_CLKCTRL_ID_Pos);
while (GCLK->STATUS.reg & GCLK_STATUS_SYNCBUSY) {}
}
void uart_poweroff(uart_t uart)
{
PM->APBCMASK.reg &= ~(PM_APBCMASK_SERCOM0 << _sercom_id(_uart(uart)));
GCLK->CLKCTRL.reg = ((SERCOM0_GCLK_ID_CORE + _sercom_id(_uart(uart))) <<
GCLK_CLKCTRL_ID_Pos);
while (GCLK->STATUS.reg & GCLK_STATUS_SYNCBUSY) {}
}
static inline void irq_handler(int dev)
{
SercomUsart *uart = _uart(dev);
if (uart->INTFLAG.reg & SERCOM_USART_INTFLAG_RXC) {
/* interrupt flag is cleared by reading the data register */
uart_ctx[dev].rx_cb(uart_ctx[dev].arg, (uint8_t)(uart->DATA.reg));
}
else if (uart->INTFLAG.reg & SERCOM_USART_INTFLAG_ERROR) {
/* clear error flag */
uart->INTFLAG.reg = SERCOM_USART_INTFLAG_ERROR;
}
if (sched_context_switch_request) {
thread_yield();
}
}
#ifdef UART_0_ISR
void UART_0_ISR(void)
{
irq_handler(0);
}
#endif
#ifdef UART_1_ISR
void UART_1_ISR(void)
{
irq_handler(1);
}
#endif
#ifdef UART_2_ISR
void UART_2_ISR(void)
{
irq_handler(2);
}
#endif
#ifdef UART_3_ISR
void UART_3_ISR(void)
{
irq_handler(3);
}
#endif
#ifdef UART_4_ISR
void UART_4_ISR(void)
{
irq_handler(4);
}
#endif
#ifdef UART_5_ISR
void UART_5_ISR(void)
{
irq_handler(5);
}
#endif