1
0
mirror of https://github.com/RIOT-OS/RIOT.git synced 2024-12-29 04:50:03 +01:00
RIOT/sys/include/net/gcoap.h
2019-11-28 12:50:24 +01:00

953 lines
36 KiB
C

/*
* Copyright (c) 2015-2017 Ken Bannister. All rights reserved.
* 2017 Freie Universität Berlin
*
* This file is subject to the terms and conditions of the GNU Lesser
* General Public License v2.1. See the file LICENSE in the top level
* directory for more details.
*/
/**
* @defgroup net_gcoap Gcoap
* @ingroup net
* @brief High-level interface to CoAP messaging
*
* gcoap provides a high-level interface for writing CoAP messages via RIOT's
* sock networking API. gcoap internalizes network event processing so an
* application only needs to focus on request/response handling. For a server,
* gcoap accepts a list of resource paths with callbacks for writing the
* response. For a client, gcoap provides a function to send a request, with a
* callback for reading the server response.
*
* gcoap allocates a RIOT message processing thread, so a single instance can
* serve multiple applications. This approach also means gcoap uses a single UDP
* port, which supports RFC 6282 compression. Internally, gcoap depends on the
* nanocoap package for base level structs and functionality. gcoap uses
* nanocoap's Packet API to write message options.
*
* gcoap supports the Observe extension (RFC 7641) for a server. gcoap provides
* functions to generate and send an observe notification that are similar to
* the functions to send a client request. gcoap also supports the Block
* extension (RFC 7959) with block-specific option functions as well as some
* helpers.
*
* *Contents*
*
* - Server Operation
* - Client Operation
* - Observe Server Operation
* - Block Operation
* - Implementation Notes
* - Implementation Status
*
* ## Server Operation ##
*
* gcoap listens for requests on GCOAP_PORT, 5683 by default. You can redefine
* this by uncommenting the appropriate lines in gcoap's make file.
*
* gcoap allows an application to specify a collection of request resource paths
* it wants to be notified about. Create an array of resources (coap_resource_t
* structs) ordered by the resource path, specifically the ASCII encoding of
* the path characters (digit and capital precede lower case). Use
* gcoap_register_listener() at application startup to pass in these resources,
* wrapped in a gcoap_listener_t. Also see _Server path matching_ in the base
* [nanocoap](group__net__nanocoap.html) documentation.
*
* gcoap itself defines a resource for `/.well-known/core` discovery, which
* lists all of the registered paths. See the _Resource list creation_ section
* below for more.
*
* ### Creating a response ###
*
* An application resource includes a callback function, a coap_handler_t. After
* reading the request, the callback must use functions provided by gcoap to
* format the response, as described below. The callback *must* read the request
* thoroughly before calling the functions, because the response buffer likely
* reuses the request buffer. See `examples/gcoap/gcoap_cli.c` for a simple
* example of a callback.
*
* Here is the expected sequence for a callback function:
*
* Read request completely and parse request payload, if any. Use the
* coap_pkt_t _payload_ and _payload_len_ attributes.
*
* If there is a payload, follow the steps below.
*
* -# Call gcoap_resp_init() to initialize the response.
* -# Use the coap_opt_add_xxx() functions to include any Options, for example
* coap_opt_add_format() for Content-Format of the payload. Options *must*
* be written in order by option number (see "CoAP option numbers" in
* [CoAP defines](group__net__coap.html)).
* -# Call coap_opt_finish() to complete the PDU metadata. Retain the returned
* metadata length.
* -# Write the response payload, starting at the updated _payload_ pointer
* in the coap_pkt_t, for up to _payload_len_ bytes.
* -# Return the sum of the metadata length and payload length. If some error
* has occurred, return a negative errno code from the handler, and gcoap
* will send a server error (5.00).
*
* If no payload, call only gcoap_response() to write the full response. If you
* need to add Options, follow the first three steps in the list above instead.
*
* ### Resource list creation ###
*
* gcoap allows customization of the function that provides the list of registered
* resources for `/.well-known/core` and CoRE Resource Directory registration.
* By default gcoap provides gcoap_encode_link(), which lists only the target
* path for each link. However, an application may specify a custom function in
* the gcoap_listener_t it registers with gcoap. For example, this function may
* add parameters to provide more information about the resource, as described
* in RFC 6690. See the gcoap example for use of a custom encoder function.
*
* ## Client Operation ##
*
* Client operation includes two phases: creating and sending a request, and
* handling the response asynchronously in a client supplied callback. See
* `examples/gcoap/gcoap_cli.c` for a simple example of sending a request and
* reading the response.
*
* ### Creating a request ###
*
* Here is the expected sequence to prepare and send a request:
*
* Allocate a buffer and a coap_pkt_t for the request.
*
* If there is a payload, follow the steps below.
*
* -# Call gcoap_req_init() to initialize the request.
* -# Optionally, mark the request confirmable by calling coap_hdr_set_type()
* with COAP_TYPE_CON.
* -# Use the coap_opt_add_xxx() functions to include any Options beyond
* Uri-Path, which was added in the first step. Options *must* be written
* in order by option number (see "CoAP option numbers" in
* [CoAP defines](group__net__coap.html)).
* -# Call coap_opt_finish() to complete the PDU metadata. Retain the returned
* metadata length.
* -# Write the request payload, starting at the updated _payload_ pointer
* in the coap_pkt_t, for up to _payload_len_ bytes.
*
* If no payload, call only gcoap_request() to write the full request. If you
* need to add Options, follow the first four steps in the list above instead.
*
* Finally, call gcoap_req_send() with the sum of the metadata length and
* payload length, the destination endpoint, and a callback function for the
* host's response.
*
* ### Handling the response ###
*
* When gcoap receives the response to a request, it executes the callback from
* the request. gcoap also executes the callback when a response is not
* received within GCOAP_RESPONSE_TIMEOUT.
*
* Here is the expected sequence for handling a response in the callback.
*
* -# Test for a server response or timeout in the `state` field of the `memo`
* callback parameter (`memo->state`). See the GCOAP_MEMO... constants.
* -# Test the response with coap_get_code_class() and coap_get_code_detail().
* -# Test the response payload with the coap_pkt_t _payload_len_ and
* _content_type_ attributes.
* -# Read the payload, if any.
*
* ## Observe Server Operation
*
* A CoAP client may register for Observe notifications for any resource that
* an application has registered with gcoap. An application does not need to
* take any action to support Observe client registration. However, gcoap
* limits registration for a given resource to a _single_ observer.
*
* It is [suggested](https://tools.ietf.org/html/rfc7641#section-6) that a
* server adds the 'obs' attribute to resources that are useful for observation
* (i.e. will produce notifications) as a hint. Keep in mind that this is not
* mandatory in order to enable the mechanism in RIOT, nor will it prevent a
* client from observing a resource that does not have this attribute in the
* link description. See the "Resource list creation" section above for how the
* gcoap example app publishes the obs attribute.
*
* An Observe notification is considered a response to the original client
* registration request. So, the Observe server only needs to create and send
* the notification -- no further communication or callbacks are required.
*
* ### Creating a notification ###
*
* Here is the expected sequence to prepare and send a notification:
*
* Allocate a buffer and a coap_pkt_t for the notification, then follow the
* steps below.
*
* -# Call gcoap_obs_init() to initialize the notification for a resource.
* Test the return value, which may indicate there is not an observer for
* the resource. If so, you are done.
* -# Use the coap_opt_add_xxx() functions to include any Options, for example
* coap_opt_add_format() for Content-Format of the payload. Options *must*
* be written in order by option number (see "CoAP option numbers" in
* [CoAP defines](group__net__coap.html)).
* -# Call coap_opt_finish() to complete the PDU metadata. Retain the returned
* metadata length.
* -# Write the notification payload, starting at the updated _payload_ pointer
* in the coap_pkt_t, for up to _payload_len_ bytes.
*
* Finally, call gcoap_obs_send() for the resource, with the sum of the
* metadata length and payload length for the representation.
*
* ### Other considerations ###
*
* By default, the value for the Observe option in a notification is three
* bytes long. For resources that change slowly, this length can be reduced via
* GCOAP_OBS_VALUE_WIDTH.
*
* A client always may re-register for a resource with the same token or with
* a new token to indicate continued interest in receiving notifications about
* it. Of course the client must not already be using any new token in the
* registration for a different resource. Successful registration always is
* indicated by the presence of the Observe option in the response.
*
* To cancel registration, the server expects to receive a GET request with
* the Observe option value set to 1. The server does not support cancellation
* via a reset (RST) response to a non-confirmable notification.
*
* ## Block Operation ##
*
* gcoap provides for both server side and client side blockwise messaging for
* requests and responses. This section outlines how to write a message for
* each situation.
*
* ### CoAP server GET handling ###
*
* The server must slice the full response body into smaller payloads, and
* identify the slice with a Block2 option. This implementation toggles the
* actual writing of data as it passes over the code for the full response
* body. See the _riot_block2_handler() example in
* [gcoap-block-server](https://github.com/kb2ma/riot-apps/blob/kb2ma-master/gcoap-block-server/gcoap_block.c),
* which implements the sequence described below.
*
* - Use coap_block2_init() to initialize a _slicer_ struct from the Block2
* option in the request. The slicer tracks boundaries while writing the
* payload. If no option present in the initial request, the init function
* defaults to a payload size of 16 bytes.
* - Use gcoap_resp_init() to begin the response.
* - Use coap_opt_add_block2() to write the Block2 option from the slicer. Use
* 1 as a default for the _more_ parameter. At this point, we don't know yet
* if this message will be the last in the block exchange. However, we must
* add the block option at this location in the message.
* - Use coap_opt_finish() to add a payload marker.
* - Add the payload using the `coap_blockwise_put_xxx()` functions. The slicer
* knows the current position in the overall body of the response. It writes
* only the portion of the body specified by the block number and block size
* in the slicer.
* - Finally, use coap_block2_finish() to finalize the block option with the
* proper value for the _more_ parameter.
*
* ### CoAP server PUT/POST handling ###
*
* The server must ack each blockwise portion of the response body received
* from the client by writing a Block1 option in the response. See the
* _sha256_handler() example in
* [gcoap-block-server](https://github.com/kb2ma/riot-apps/blob/kb2ma-master/gcoap-block-server/gcoap_block.c),
* which implements the sequence described below.
*
* - Use coap_get_block1() to initialize a block1 struct from the request.
* - Determine the response code. If the block1 _more_ attribute is 1, use
* COAP_CODE_CONTINUE to request more responses. Otherwise, use
* COAP_CODE_CHANGED to indicate a successful transfer.
* - Use gcoap_resp_init() to begin the response, including the response code.
* - Use coap_opt_add_block1_control() to write the Block1 option.
* - Use coap_opt_finish() to determine the length of the PDU. If appropriate,
* use the COAP_OPT_FINISH_PAYLOAD parameter and then write the payload.
*
* ### CoAP client GET request ###
*
* The client requests a specific blockwise payload from the overall body by
* writing a Block2 option in the request. See _resp_handler() in the
* [gcoap](https://github.com/RIOT-OS/RIOT/blob/master/examples/gcoap/gcoap_cli.c)
* example in the RIOT distribution, which implements the sequence described
* below.
*
* - For the first request, use coap_block_object_init() to initialize a new
* block1 struct. For subsequent requests, first use coap_get_block2() to
* read the Block2 option in the response to the previous request. If the
* _more_ attribute indicates no more blocks, you are done.
* - The gcoap example actually does _not_ include a Block2 option in the
* original request, but the server response includes a blockwise response
* with a Block2 option anyway. On the other hand, this example shows how
* blockwise messaging can be supported in a generic way.
* - If more blocks are available, use gcoap_req_init() to create a new
* request.
* - Increment the _blknum_ attribute in the block1 struct from the previous
* response to request the next blockwise payload.
* - Use coap_opt_put_block2_control() to write the Block2 option to the
* request.
* - Use coap_opt_finish() to determine the length of the PDU.
*
* ### CoAP client PUT/POST request ###
*
* The client pushes a specific blockwise payload from the overall body to the
* server by writing a Block1 option in the request. See _do_block_post() in
* the [gcoap-block-client](https://github.com/kb2ma/riot-apps/blob/kb2ma-master/gcoap-block-client/gcoap_block.c)
* example, which implements the sequence described below.
*
* - For the first request, use coap_block_slicer_init() to initialize a
* _slicer_ struct with the desired block number and block size. For
* subsequent requests, first read the response from the server to the
* previous request. If the response code is COAP_CODE_CONTINUE, then
* increment the last block number sent when initializing the slicer struct
* for the next request.
* - Use gcoap_req_init() to initialize the request.
* - Use coap_opt_add_block1() to add the Block1 option from the slicer. Use 1
* as a default for the _more_ parameter. At this point, we don't know yet if
* this message will be the last in the block exchange. However, we must add
* the block option at this location in the message.
* - Use coap_opt_finish() with COAP_OPT_FINISH_PAYLOAD to write the payload
* marker.
* - Add the payload using the `coap_blockwise_put_xxx()` functions. The slicer
* knows the current position in the overall body of the response. It writes
* only the portion of the body specified by the block number and block size
* in the slicer.
* - Finally, use coap_block1_finish() to finalize the block option with the
* proper value for the _more_ parameter.
*
* ## Implementation Notes ##
*
* ### Waiting for a response ###
*
* We take advantage of RIOT's asynchronous messaging by using an xtimer to wait
* for a response, so the gcoap thread does not block while waiting. The user is
* notified via the same callback, whether the message is received or the wait
* times out. We track the response with an entry in the
* `_coap_state.open_reqs` array.
*
* ## Implementation Status ##
* gcoap includes server and client capability. Available features include:
*
* - Message Type: Supports non-confirmable (NON) messaging. Additionally
* provides a callback on timeout. Provides piggybacked ACK response to a
* confirmable (CON) request.
* - Observe extension: Provides server-side registration and notifications.
* - Server and Client provide helper functions for writing the
* response/request. See the CoAP topic in the source documentation for
* details. See the gcoap example for sample implementations.
* - Server allows an application to register a 'listener', which includes an
* array of endpoint paths and function callbacks used to write a response.
* - Server listens on a port at startup; defaults to 5683.
* - Client operates asynchronously; sends request and then handles response
* in a user provided callback.
* - Client generates token; length defined at compile time.
* - Options: Supports Content-Format for payload.
*
* @{
*
* @file
* @brief gcoap definition
*
* @author Ken Bannister <kb2ma@runbox.com>
* @author Hauke Petersen <hauke.petersen@fu-berlin.de>
*/
#ifndef NET_GCOAP_H
#define NET_GCOAP_H
#include <stdint.h>
#include "net/ipv6/addr.h"
#include "net/sock/udp.h"
#include "net/nanocoap.h"
#include "xtimer.h"
#ifdef __cplusplus
extern "C" {
#endif
/**
* @defgroup net_gcoap_conf Gcoap compile configurations
* @ingroup net_gcoap
* @ingroup config
* @{
*/
/**
* @brief Size for module message queue
*/
#ifndef GCOAP_MSG_QUEUE_SIZE
#define GCOAP_MSG_QUEUE_SIZE (4)
#endif
/**
* @brief Server port; use RFC 7252 default if not defined
*/
#ifndef GCOAP_PORT
#define GCOAP_PORT (5683)
#endif
/**
* @brief Size of the buffer used to build a CoAP request or response
*/
#ifndef GCOAP_PDU_BUF_SIZE
#define GCOAP_PDU_BUF_SIZE (128)
#endif
/**
* @brief Reduce payload length by this value for a request
*
* Accommodates writing Content-Format option in gcoap_finish(). May set to
* zero if function not used.
*/
#ifndef GCOAP_REQ_OPTIONS_BUF
#define GCOAP_REQ_OPTIONS_BUF (4)
#endif
/**
* @brief Reduce payload length by this value for a response
*
* Accommodates writing Content-Format option in gcoap_finish(). May set to
* zero if function not used.
*/
#ifndef GCOAP_RESP_OPTIONS_BUF
#define GCOAP_RESP_OPTIONS_BUF (4)
#endif
/**
* @brief Reduce payload length by this value for an observe notification
*
* Accommodates writing Content-Format option in gcoap_finish(). May set to
* zero if function not used.
*/
#ifndef GCOAP_OBS_OPTIONS_BUF
#define GCOAP_OBS_OPTIONS_BUF (4)
#endif
/**
* @brief Maximum number of requests awaiting a response
*/
#ifndef GCOAP_REQ_WAITING_MAX
#define GCOAP_REQ_WAITING_MAX (2)
#endif
/** @} */
/**
* @brief Maximum length in bytes for a token
*/
#define GCOAP_TOKENLEN_MAX (8)
/**
* @brief Maximum length in bytes for a header, including the token
*/
#define GCOAP_HEADER_MAXLEN (sizeof(coap_hdr_t) + GCOAP_TOKENLEN_MAX)
/**
* @ingroup net_gcoap_conf
* @brief Length in bytes for a token
*
* Value must be in the range 0 to @ref GCOAP_TOKENLEN_MAX.
*/
#ifndef GCOAP_TOKENLEN
#define GCOAP_TOKENLEN (2)
#endif
/**
* @brief Marks the boundary between header and payload
*/
#define GCOAP_PAYLOAD_MARKER (0xFF)
/**
* @ingroup net_gcoap_conf
* @brief Disables gcoap startup during system auto init
*
* If disabled, gcoap_init() must be called by some other means.
*/
#ifndef GCOAP_NO_AUTO_INIT
#define GCOAP_NO_AUTO_INIT 0
#endif
/**
* @name States for the memo used to track waiting for a response
* @{
*/
#define GCOAP_MEMO_UNUSED (0) /**< This memo is unused */
#define GCOAP_MEMO_WAIT (1) /**< Request sent; awaiting response */
#define GCOAP_MEMO_RESP (2) /**< Got response */
#define GCOAP_MEMO_TIMEOUT (3) /**< Timeout waiting for response */
#define GCOAP_MEMO_ERR (4) /**< Error processing response packet */
/** @} */
/**
* @brief Value for send_limit in request memo when non-confirmable type
*/
#define GCOAP_SEND_LIMIT_NON (-1)
/**
* @ingroup net_gcoap_conf
* @brief Time in usec that the event loop waits for an incoming CoAP message
*/
#ifndef GCOAP_RECV_TIMEOUT
#define GCOAP_RECV_TIMEOUT (1 * US_PER_SEC)
#endif
#ifdef DOXYGEN
/**
* @ingroup net_gcoap_conf
* @brief Turns off retransmission backoff when defined (undefined per default)
*
* In normal operations the timeout between retransmissions doubles. When
* GCOAP_NO_RETRANS_BACKOFF is defined this doubling does not happen.
*
* @see COAP_ACK_TIMEOUT
* @see COAP_ACK_VARIANCE
*/
#define GCOAP_NO_RETRANS_BACKOFF
#endif
/**
* @ingroup net_gcoap_conf
* @brief Default time to wait for a non-confirmable response [in usec]
*
* Set to 0 to disable timeout.
*/
#ifndef GCOAP_NON_TIMEOUT
#define GCOAP_NON_TIMEOUT (5000000U)
#endif
/**
* @brief Identifies waiting timed out for a response to a sent message
*/
#define GCOAP_MSG_TYPE_TIMEOUT (0x1501)
/**
* @brief Identifies a request to interrupt listening for an incoming message
* on a sock
*
* Allows the event loop to process IPC messages.
*/
#define GCOAP_MSG_TYPE_INTR (0x1502)
/**
* @ingroup net_gcoap_conf
* @brief Maximum number of Observe clients
*/
#ifndef GCOAP_OBS_CLIENTS_MAX
#define GCOAP_OBS_CLIENTS_MAX (2)
#endif
/**
* @ingroup net_gcoap_conf
* @brief Maximum number of registrations for Observable resources
*/
#ifndef GCOAP_OBS_REGISTRATIONS_MAX
#define GCOAP_OBS_REGISTRATIONS_MAX (2)
#endif
/**
* @name States for the memo used to track Observe registrations
* @{
*/
#define GCOAP_OBS_MEMO_UNUSED (0) /**< This memo is unused */
#define GCOAP_OBS_MEMO_IDLE (1) /**< Registration OK; no current activity */
#define GCOAP_OBS_MEMO_PENDING (2) /**< Resource changed; notification pending */
/** @} */
/**
* @ingroup net_gcoap_conf
* @brief Width in bytes of the Observe option value for a notification
*
* This width is used to determine the length of the 'tick' used to measure
* the time between observable changes to a resource. A tick is expressed
* internally as GCOAP_OBS_TICK_EXPONENT, which is the base-2 log value of the
* tick length in microseconds.
*
* The canonical setting for the value width is 3 (exponent 5), which results
* in a tick length of 32 usec, per sec. 3.4, 4.4 of the RFC. Width 2
* (exponent 16) results in a tick length of ~65 msec, and width 1 (exponent
* 24) results in a tick length of ~17 sec.
*
* The tick length must be short enough so that the Observe value strictly
* increases for each new notification. The purpose of the value is to allow a
* client to detect message reordering within the network latency period (128
* sec). For resources that change only slowly, the reduced message length is
* useful when packet size is limited.
*/
#ifndef GCOAP_OBS_VALUE_WIDTH
#define GCOAP_OBS_VALUE_WIDTH (3)
#endif
/**
* @brief See GCOAP_OBS_VALUE_WIDTH
*/
#if (GCOAP_OBS_VALUE_WIDTH == 3)
#define GCOAP_OBS_TICK_EXPONENT (5)
#elif (GCOAP_OBS_VALUE_WIDTH == 2)
#define GCOAP_OBS_TICK_EXPONENT (16)
#elif (GCOAP_OBS_VALUE_WIDTH == 1)
#define GCOAP_OBS_TICK_EXPONENT (24)
#endif
/**
* @name Return values for gcoap_obs_init()
* @{
*/
#define GCOAP_OBS_INIT_OK (0)
#define GCOAP_OBS_INIT_ERR (-1)
#define GCOAP_OBS_INIT_UNUSED (-2)
/** @} */
/**
* @brief Stack size for module thread
*/
#ifndef GCOAP_STACK_SIZE
#define GCOAP_STACK_SIZE (THREAD_STACKSIZE_DEFAULT + DEBUG_EXTRA_STACKSIZE \
+ sizeof(coap_pkt_t))
#endif
/**
* @ingroup net_gcoap_conf
* @brief Count of PDU buffers available for resending confirmable messages
*/
#ifndef GCOAP_RESEND_BUFS_MAX
#define GCOAP_RESEND_BUFS_MAX (1)
#endif
/**
* @name Bitwise positional flags for encoding resource links
* @{
*/
#define COAP_LINK_FLAG_INIT_RESLIST (1) /**< initialize as for first resource
* in a list */
/** @} */
/**
* @brief Context information required to write a resource link
*/
typedef struct {
unsigned content_format; /**< link format */
size_t link_pos; /**< position of link within listener */
uint16_t flags; /**< encoder switches; see GCOAP_LINK_FLAG_*
constants */
} coap_link_encoder_ctx_t;
/**
* @brief Handler function to write a resource link
*
* @param[in] resource Resource for link
* @param[out] buf Buffer on which to write; may be null
* @param[in] maxlen Remaining length for @p buf
* @param[in] context Contextual information on what/how to write
*
* @return count of bytes written to @p buf (or writable if @p buf is null)
* @return -1 on error
*/
typedef ssize_t (*gcoap_link_encoder_t)(const coap_resource_t *resource, char *buf,
size_t maxlen, coap_link_encoder_ctx_t *context);
/**
* @brief A modular collection of resources for a server
*/
typedef struct gcoap_listener {
const coap_resource_t *resources; /**< First element in the array of
* resources; must order alphabetically */
size_t resources_len; /**< Length of array */
gcoap_link_encoder_t link_encoder; /**< Writes a link for a resource */
struct gcoap_listener *next; /**< Next listener in list */
} gcoap_listener_t;
/**
* @brief Forward declaration of the request memo type
*/
typedef struct gcoap_request_memo gcoap_request_memo_t;
/**
* @brief Handler function for a server response, including the state for the
* originating request
*
* If request timed out, the packet header is for the request.
*/
typedef void (*gcoap_resp_handler_t)(const gcoap_request_memo_t *memo,
coap_pkt_t* pdu,
const sock_udp_ep_t *remote);
/**
* @brief Extends request memo for resending a confirmable request.
*/
typedef struct {
uint8_t *pdu_buf; /**< Buffer containing the PDU */
size_t pdu_len; /**< Length of pdu_buf */
} gcoap_resend_t;
/**
* @brief Memo to handle a response for a request
*/
struct gcoap_request_memo {
unsigned state; /**< State of this memo, a GCOAP_MEMO... */
int send_limit; /**< Remaining resends, 0 if none;
GCOAP_SEND_LIMIT_NON if non-confirmable */
union {
uint8_t hdr_buf[GCOAP_HEADER_MAXLEN];
/**< Copy of PDU header, if no resends */
gcoap_resend_t data; /**< Endpoint and PDU buffer, for resend */
} msg; /**< Request message data; if confirmable,
supports resending message */
sock_udp_ep_t remote_ep; /**< Remote endpoint */
gcoap_resp_handler_t resp_handler; /**< Callback for the response */
void *context; /**< ptr to user defined context data */
xtimer_t response_timer; /**< Limits wait for response */
msg_t timeout_msg; /**< For response timer */
};
/**
* @brief Memo for Observe registration and notifications
*/
typedef struct {
sock_udp_ep_t *observer; /**< Client endpoint; unused if null */
const coap_resource_t *resource; /**< Entity being observed */
uint8_t token[GCOAP_TOKENLEN_MAX]; /**< Client token for notifications */
unsigned token_len; /**< Actual length of token attribute */
} gcoap_observe_memo_t;
/**
* @brief Initializes the gcoap thread and device
*
* Must call once before first use.
*
* @return PID of the gcoap thread on success.
* @return -EEXIST, if thread already has been created.
* @return -EINVAL, if the IP port already is in use.
*/
kernel_pid_t gcoap_init(void);
/**
* @brief Starts listening for resource paths
*
* @param[in] listener Listener containing the resources.
*/
void gcoap_register_listener(gcoap_listener_t *listener);
/**
* @brief Initializes a CoAP request PDU on a buffer.
*
* @param[out] pdu Request metadata
* @param[out] buf Buffer containing the PDU
* @param[in] len Length of the buffer
* @param[in] code Request code, one of COAP_METHOD_XXX
* @param[in] path Resource path, may be NULL
*
* @pre @p path must start with `/` if not NULL
*
* @return 0 on success
* @return < 0 on error
*/
int gcoap_req_init(coap_pkt_t *pdu, uint8_t *buf, size_t len,
unsigned code, const char *path);
/**
* @brief Finishes formatting a CoAP PDU after the payload has been written
*
* Assumes the PDU has been initialized with a gcoap_xxx_init() function, like
* gcoap_req_init().
*
* @warning To use this function, you only may have added an Option with
* option number less than COAP_OPT_CONTENT_FORMAT. Otherwise, use the
* struct-based API described with @link net_nanocoap nanocoap. @endlink With
* this API, you specify the format with coap_opt_add_uint(), prepare for the
* payload with coap_opt_finish(), and then write the payload.
*
* @param[in,out] pdu Request metadata
* @param[in] payload_len Length of the payload, or 0 if none
* @param[in] format Format code for the payload; use COAP_FORMAT_NONE if
* not specified
*
* @return size of the PDU
* @return < 0 on error
*/
ssize_t gcoap_finish(coap_pkt_t *pdu, size_t payload_len, unsigned format);
/**
* @brief Writes a complete CoAP request PDU when there is not a payload
*
* @param[in,out] pdu Request metadata
* @param[in,out] buf Buffer containing the PDU
* @param[in] len Length of the buffer
* @param[in] code Request code: GCOAP_[GET|POST|PUT|DELETE]
* @param[in] path Resource path, *must* start with '/'
*
* @return size of the PDU within the buffer
* @return < 0 on error
*/
static inline ssize_t gcoap_request(coap_pkt_t *pdu, uint8_t *buf, size_t len,
unsigned code, char *path)
{
return (gcoap_req_init(pdu, buf, len, code, path) == 0)
? coap_opt_finish(pdu, COAP_OPT_FINISH_NONE)
: -1;
}
/**
* @brief Sends a buffer containing a CoAP request to the provided endpoint
*
* @param[in] buf Buffer containing the PDU
* @param[in] len Length of the buffer
* @param[in] remote Destination for the packet
* @param[in] resp_handler Callback when response received, may be NULL
* @param[in] context User defined context passed to the response handler
*
* @return length of the packet
* @return 0 if cannot send
*/
size_t gcoap_req_send(const uint8_t *buf, size_t len,
const sock_udp_ep_t *remote,
gcoap_resp_handler_t resp_handler, void *context);
/**
* @brief Sends a buffer containing a CoAP request to the provided endpoint
*
* @deprecated Migration alias for @ref gcoap_req_send(). Will be removed after
* the 2020.01 release.
*
* @param[in] buf Buffer containing the PDU
* @param[in] len Length of the buffer
* @param[in] remote Destination for the packet
* @param[in] resp_handler Callback when response received, may be NULL
* @param[in] context User defined context passed to the response handler
*
* @return length of the packet
* @return 0 if cannot send
*/
static inline size_t gcoap_req_send2(const uint8_t *buf, size_t len,
const sock_udp_ep_t *remote,
gcoap_resp_handler_t resp_handler,
void *context)
{
return gcoap_req_send(buf, len, remote, resp_handler, context);
}
/**
* @brief Initializes a CoAP response packet on a buffer
*
* Initializes payload location within the buffer based on packet setup.
*
* @param[out] pdu Response metadata
* @param[in] buf Buffer containing the PDU
* @param[in] len Length of the buffer
* @param[in] code Response code
*
* @return 0 on success
* @return < 0 on error
*/
int gcoap_resp_init(coap_pkt_t *pdu, uint8_t *buf, size_t len, unsigned code);
/**
* @brief Writes a complete CoAP response PDU when there is no payload
*
* @param[out] pdu Response metadata
* @param[out] buf Buffer containing the PDU
* @param[in] len Length of the buffer
* @param[in] code Response code
*
* @return size of the PDU within the buffer
* @return < 0 on error
*/
static inline ssize_t gcoap_response(coap_pkt_t *pdu, uint8_t *buf,
size_t len, unsigned code)
{
return (gcoap_resp_init(pdu, buf, len, code) == 0)
? coap_opt_finish(pdu, COAP_OPT_FINISH_NONE)
: -1;
}
/**
* @brief Initializes a CoAP Observe notification packet on a buffer, for the
* observer registered for a resource
*
* First verifies that an observer has been registered for the resource.
*
* @param[out] pdu Notification metadata
* @param[out] buf Buffer containing the PDU
* @param[in] len Length of the buffer
* @param[in] resource Resource for the notification
*
* @return GCOAP_OBS_INIT_OK on success
* @return GCOAP_OBS_INIT_ERR on error
* @return GCOAP_OBS_INIT_UNUSED if no observer for resource
*/
int gcoap_obs_init(coap_pkt_t *pdu, uint8_t *buf, size_t len,
const coap_resource_t *resource);
/**
* @brief Sends a buffer containing a CoAP Observe notification to the
* observer registered for a resource
*
* Assumes a single observer for a resource.
*
* @param[in] buf Buffer containing the PDU
* @param[in] len Length of the buffer
* @param[in] resource Resource to send
*
* @return length of the packet
* @return 0 if cannot send
*/
size_t gcoap_obs_send(const uint8_t *buf, size_t len,
const coap_resource_t *resource);
/**
* @brief Provides important operational statistics
*
* Useful for monitoring.
*
* @return count of unanswered requests
*/
uint8_t gcoap_op_state(void);
/**
* @brief Get the resource list, currently only `CoRE Link Format`
* (COAP_FORMAT_LINK) supported
*
* If @p buf := NULL, nothing will be written but the size of the resulting
* resource list is computed and returned.
*
* @param[out] buf output buffer to write resource list into, my be NULL
* @param[in] maxlen length of @p buf, ignored if @p buf is NULL
* @param[in] cf content format to use for the resource list, currently
* only COAP_FORMAT_LINK supported
*
* @todo add support for `JSON CoRE Link Format`
* @todo add support for 'CBOR CoRE Link Format`
*
* @return the number of bytes written to @p buf
* @return -1 on error
*/
int gcoap_get_resource_list(void *buf, size_t maxlen, uint8_t cf);
/**
* @brief Writes a resource in CoRE Link Format to a provided buffer.
*
* This default implementation only writes the resource path.
*
* @param[in] resource resource to write
* @param[out] buf output buffer to write link into, may be null
* @param[in] maxlen length of @p buf, ignored if @p buf is NULL
* @param[in] context other parameters that affect how link is written
*
* @return count of bytes written to @p buf (or writable if @p buf is null)
* @return -1 on error
*/
ssize_t gcoap_encode_link(const coap_resource_t *resource, char *buf,
size_t maxlen, coap_link_encoder_ctx_t *context);
/**
* @brief Adds a single Uri-Query option to a CoAP request
*
* To add multiple Uri-Query options, simply call this function multiple times.
* The Uri-Query options will be added in the order those calls.
*
* @param[out] pdu The package that is being build
* @param[in] key Key to add to the query string
* @param[in] val Value to assign to @p key (may be NULL)
*
* @pre ((pdu != NULL) && (key != NULL))
*
* @return overall length of new query string
* @return -1 on error
*/
int gcoap_add_qstring(coap_pkt_t *pdu, const char *key, const char *val);
#ifdef __cplusplus
}
#endif
#endif /* NET_GCOAP_H */
/** @} */