1
0
mirror of https://github.com/RIOT-OS/RIOT.git synced 2025-01-18 12:52:44 +01:00
RIOT/drivers/cc110x/cc1100_phy.c
2014-02-11 18:45:06 +01:00

887 lines
31 KiB
C

/******************************************************************************
* Copyright 2008, Freie Universitaet Berlin (FUB). All rights reserved.
*
* These sources were developed at the Freie Universitaet Berlin, Computer Systems
and Telematics group (http://cst.mi.fu-berlin.de).
* ----------------------------------------------------------------------------
* This file is part of RIOT.
*
* This file is subject to the terms and conditions of the GNU Lesser General
* Public License. See the file LICENSE in the top level directory for more
* details.
*
*******************************************************************************/
/**
* @ingroup dev_cc110x
* @{
*/
/**
* @file
* @internal
* @brief TI Chipcon CC110x physical radio driver
*
* @author Freie Universität Berlin, Computer Systems & Telematics
* @author Thomas Hillebrandt <hillebra@inf.fu-berlin.de>
* @author Heiko Will <hwill@inf.fu-berlin.de>
* @author Oliver Hahm <oliver.hahm@inria.fr>
* @version $Revision: 2130 $
*
* @note $Id: cc1100_phy.c 2130 2010-05-12 13:19:07Z hillebra $
*/
#include <stdio.h>
#include <string.h>
#include "hwtimer.h"
#include "vtimer.h"
#include "cc1100.h"
#include "cc1100_spi.h"
#include "cc1100_phy.h"
#include "cc1100-defaultSettings.h"
#include "protocol-multiplex.h"
#include "kernel.h"
#include "thread.h"
#include "mutex.h"
#include "msg.h"
#include "debug.h"
#define PRIORITY_CC1100 PRIORITY_MAIN-1
#define MSG_POLL 12346
#define FLAGS_IDENTIFICATION (0x01) ///< Bit mask for reading the identification out of the flags field
#define R_FLAGS_PROTOCOL(x) ((x & 0x0E)>>1) ///< Macro for reading the protocol out of the flags field
#define W_FLAGS_PROTOCOL(x) ((x<<1) & 0x0E) ///< Macro for writing the protocol in the flags field
/*---------------------------------------------------------------------------*/
/* RX/TX buffer data structures */
/*---------------------------------------------------------------------------*/
typedef struct {
cc1100_packet_layer0_t packet;
packet_info_t info;
} rx_buffer_t;
#define RX_BUFF_SIZE (10) ///< Size of RX queue
static volatile uint8_t rx_buffer_head; ///< RX queue head
static volatile uint8_t rx_buffer_tail; ///< RX queue tail
static volatile uint8_t rx_buffer_size; ///< RX queue size
static rx_buffer_t rx_buffer[RX_BUFF_SIZE]; ///< RX buffer
static cc1100_packet_layer0_t tx_buffer; ///< TX buffer (for one packet)
/*---------------------------------------------------------------------------*/
/* Process/Event management data structures */
/*---------------------------------------------------------------------------*/
#define MAX_PACKET_HANDLERS (5)
static packet_monitor_t packet_monitor;
static handler_entry_t handlers[MAX_PACKET_HANDLERS];
static const pm_table_t handler_table;
static const char *cc1100_event_handler_name = "cc1100_event_handler";
static mutex_t cc1100_mutex;
volatile int cc1100_mutex_pid;
static vtimer_t cc1100_watch_dog;
static timex_t cc1100_watch_dog_period;
static uint16_t cc1100_event_handler_pid;
static void cc1100_event_handler_function(void);
static char event_handler_stack[KERNEL_CONF_STACKSIZE_MAIN];
/*---------------------------------------------------------------------------*/
/* Sequence number buffer management data structures */
/*---------------------------------------------------------------------------*/
/**
* @name Sequence Buffer
* @{
*/
#define MAX_SEQ_BUFFER_SIZE (20) ///< Maximum size of the sequence number buffer
typedef struct {
uint64_t m_ticks; ///< 64-bit timestamp
uint8_t source; ///< Source address
uint8_t identification; ///< Identification (1-bit)
} seq_buffer_entry_t;
//* Sequence number buffer for this layer */
static seq_buffer_entry_t seq_buffer[MAX_SEQ_BUFFER_SIZE];
//* Next position to enter a new value into ::seqBuffer */
static uint8_t seq_buffer_pos = 0;
/**
* @brief Last sequence number this node has seen
*
* @note (phySrc + flags.identification) - for speedup in ISR.
*/
static volatile uint16_t last_seq_num = 0;
/** @} */
/*---------------------------------------------------------------------------*/
// WOR configuration data structures
/*---------------------------------------------------------------------------*/
#define EVENT0_MAX (60493) ///< Maximum RX polling interval in milliseconds
#define WOR_RES_SWITCH (1891) ///< Switching point value in milliseconds between
///< WOR_RES = 0 and WOR_RES = 1
#define DUTY_CYCLE_SIZE (7) ///< Length of duty cycle array
cc1100_wor_config_t cc1100_wor_config; ///< CC1100 WOR configuration
uint16_t cc1100_burst_count; ///< Burst count, number of packets in a burst transfer
uint8_t cc1100_retransmission_count_uc; ///< Number of retransmissions for unicast
uint8_t cc1100_retransmission_count_bc; ///< Number of retransmissions for broadcast
static const double duty_cycle[2][DUTY_CYCLE_SIZE] = { ///< Duty cycle values from AN047
{12.5, 6.25, 3.125, 1.563, 0.781, 0.391, 0.195},
{1.95, 0.9765, 0.4883, 0.2441, 0.1221, 0.061035, 0.030518}
};
/*---------------------------------------------------------------------------*/
// Data structures for statistic
/*---------------------------------------------------------------------------*/
cc1100_statistic_t cc1100_statistic;
/*---------------------------------------------------------------------------*/
// Initialization of physical layer
/*---------------------------------------------------------------------------*/
void cc1100_phy_init()
{
int i;
rx_buffer_head = 0;
rx_buffer_tail = 0;
rx_buffer_size = 0;
/* Initialize RX-Buffer (clear content) */
for (i = 0; i < RX_BUFF_SIZE; i++) {
rx_buffer->packet.length = 0;
}
/* Initialize handler table & packet monitor */
packet_monitor = NULL;
pm_init_table((pm_table_t *)&handler_table, MAX_PACKET_HANDLERS, handlers);
/* Clear sequence number buffer */
memset(seq_buffer, 0, sizeof(seq_buffer_entry_t) * MAX_SEQ_BUFFER_SIZE);
/* Initialize mutex */
cc1100_mutex_pid = -1;
mutex_init(&cc1100_mutex);
/* Allocate event numbers and start cc1100 event process */
cc1100_event_handler_pid = thread_create(event_handler_stack, sizeof(event_handler_stack), PRIORITY_CC1100, CREATE_STACKTEST,
cc1100_event_handler_function, cc1100_event_handler_name);
/* Active watchdog for the first time */
if (radio_mode == CC1100_MODE_CONSTANT_RX) {
cc1100_watch_dog_period = timex_set(CC1100_WATCHDOG_PERIOD, 0);
if (timex_cmp(cc1100_watch_dog_period, timex_set(0, 0)) != 0) {
vtimer_set_msg(&cc1100_watch_dog, cc1100_watch_dog_period, cc1100_event_handler_pid, NULL);
}
}
}
/*---------------------------------------------------------------------------*/
/* CC1100 mutual exclusion */
/*---------------------------------------------------------------------------*/
void cc1100_phy_mutex_lock(void)
{
if (active_thread->pid != cc1100_mutex_pid) {
mutex_lock(&cc1100_mutex);
cc1100_mutex_pid = active_thread->pid;
}
}
void cc1100_phy_mutex_unlock(void)
{
cc1100_mutex_pid = -1;
mutex_unlock(&cc1100_mutex);
}
/*---------------------------------------------------------------------------*/
// Statistical functions
/*---------------------------------------------------------------------------*/
void cc1100_reset_statistic(void)
{
cc1100_statistic.packets_in_up = 0;
cc1100_statistic.acks_send = 0;
cc1100_statistic.packets_out_acked = 0;
cc1100_statistic.packets_in = 0;
cc1100_statistic.packets_out = 0;
cc1100_statistic.packets_out_broadcast = 0;
cc1100_statistic.raw_packets_out_acked = 0;
cc1100_statistic.raw_packets_out = 0;
cc1100_statistic.packets_in_dups = 0;
cc1100_statistic.packets_in_crc_fail = 0;
cc1100_statistic.packets_in_while_tx = 0;
cc1100_statistic.rx_buffer_max = 0;
cc1100_statistic.watch_dog_resets = 0;
}
void cc1100_print_statistic(void)
{
printf("\nStatistic on CC1100 interface\n\n");
printf("Total packets send on layer 0.5 (broadcast): %lu\n", cc1100_statistic.packets_out_broadcast);
printf("Total packets send on layer 0.5 (unicast): %lu\n", cc1100_statistic.packets_out);
printf("Total packets Acked on layer 0.5: %lu (%.2f%%)\n", cc1100_statistic.packets_out_acked, cc1100_statistic.packets_out_acked * (100.0f / (float)cc1100_statistic.packets_out));
printf("Total packets send on layer 0: %lu\n", cc1100_statistic.raw_packets_out);
printf("Total packets send on layer 0 w. Ack on Layer 0.5: %lu (Avg. Ack after: %lu packets)\n", cc1100_statistic.raw_packets_out_acked, cc1100_statistic.raw_packets_out_acked / cc1100_statistic.packets_out_acked);
printf("Burst count on this node: %i (%.2f%%)\n", cc1100_burst_count, (100 / (float)cc1100_burst_count) * (cc1100_statistic.raw_packets_out_acked / (float) cc1100_statistic.packets_out_acked));
printf("Total packets In on layer 0: %lu\n", cc1100_statistic.packets_in);
printf("Duped packets In on layer 0: %lu\n", cc1100_statistic.packets_in_dups);
printf("Corrupted packets In on layer 0: %lu\n", cc1100_statistic.packets_in_crc_fail);
printf("Packets In on layer 0 while in TX: %lu\n", cc1100_statistic.packets_in_while_tx);
printf("Total packets In and up to layer 1: %lu (%.2f%%)\n", cc1100_statistic.packets_in_up, cc1100_statistic.packets_in_up * (100.0f / (float)cc1100_statistic.packets_in));
printf("Total Acks send on layer 0.5: %lu\n", cc1100_statistic.acks_send);
printf("RX Buffer max: %lu (now: %u)\n", cc1100_statistic.rx_buffer_max, rx_buffer_size);
printf("State machine resets by cc1100 watchdog: %lu\n", cc1100_statistic.watch_dog_resets);
}
void cc1100_print_config(void)
{
char buf[8];
printf("Current radio mode: %s\r\n", cc1100_mode_to_text(radio_mode));
printf("Current radio state: %s\r\n", cc1100_state_to_text(radio_state));
printf("Current MARC state: %s\r\n", cc1100_get_marc_state());
printf("Current channel number: %u\r\n", cc1100_get_channel());
printf("Burst count: %u packet(s)\r\n", cc1100_burst_count);
printf("Retransmissions (unicast): %u - if no ACK\r\n", cc1100_retransmission_count_uc);
printf("Retransmissions (broadcast): %u - always\r\n", cc1100_retransmission_count_bc);
printf("Output power setting: %s\r\n", cc1100_get_output_power(buf));
if (radio_mode == CC1100_MODE_WOR) {
printf("RX polling interval: %u ms\r\n", cc1100_wor_config.rx_interval);
printf("WOR receive time: 0x%.2X (%f ms)\r\n", cc1100_wor_config.rx_time_reg,
cc1100_wor_config.rx_time_ms);
printf("CC1100 WOREVT0 register: 0x%.2X\r\n", cc1100_wor_config.wor_evt_0);
printf("CC1100 WOREVT1 register: 0x%.2X\r\n", cc1100_wor_config.wor_evt_1);
printf("CC1100 WOR_CTRL register: 0x%.2X\r\n", cc1100_wor_config.wor_ctrl);
printf("CC1100 MAN_WOR flag: %u\r\n", rflags.MAN_WOR);
}
}
/*---------------------------------------------------------------------------*/
// Change of RX polling interval (T_EVENT0)
/*---------------------------------------------------------------------------*/
inline uint16_t iround(double d)
{
return (uint16_t) (d + 0.5);
}
int cc1100_phy_calc_wor_settings(uint16_t millis)
{
/* Get packet interval as milliseconds */
double t_packet_interval = (double)((T_PACKET_INTERVAL) / 1000.0);
/* Calculate minimal T_EVENT0:
(1) t_rx_time > t_packet_interval
(2) t_rx_time = T_EVENT0 / 2 ^ (RX_TIME + 3 + WOR_RES)
------------------------------------------------------
with RX_TIME = 0 && WOR_RES = 0 => event0_min > t_packet_interval * 8
t_packet_interval = 3.8 ms (@400kbit/s)
=> event0_min = Math.ceil(3.8 * 8) + 10 */
uint16_t event0_min = (uint16_t)(t_packet_interval * 8) + 1 + 10;
/* Check if given value is in allowed range */
if (millis < event0_min || millis > EVENT0_MAX) {
return -1;
}
/* Time resolution for EVENT0 and other WOR parameters, */
/* possible values are 0 and 1 if WOR is used */
uint8_t wor_res = millis < WOR_RES_SWITCH ? 0 : 1;
/* Calculate new value for EVENT0 */
double tmp = (millis * 26) / (double) 750;
if (wor_res == 1) {
tmp /= 32;
}
tmp *= 1000;
uint16_t event0 = (uint16_t) iround(tmp);
/* Calculate all possible RX timeouts */
int i;
double rx_timeouts[DUTY_CYCLE_SIZE];
for (i = 0; i < DUTY_CYCLE_SIZE; i++) {
rx_timeouts[i] = (millis * duty_cycle[wor_res][i]) / 100;
}
/* Calculate index for optimal rx_timeout (MCSM2.RX_TIME) (if possible) */
int idx = -1;
for (i = DUTY_CYCLE_SIZE - 1; i >= 0; i--) {
if (rx_timeouts[i] > t_packet_interval) {
idx = i;
break;
}
}
/* If no index found, exit here (configuration with given value is not possible) */
if (idx == -1) {
return -1;
}
/* Calculate burst count (secure burst calculation with 8 extra packets) */
int burst_count = (int) iround(millis / t_packet_interval) + 8;
/* All calculations successful, now its safe to store */
/* final configuration values in global WOR configuration */
cc1100_wor_config.rx_interval = millis;
cc1100_wor_config.wor_ctrl = (wor_res == 0) ? 0x78 : 0x79;
cc1100_wor_config.wor_evt_0 = (uint8_t) event0;
cc1100_wor_config.wor_evt_1 = (uint8_t)(event0 >> 8);
cc1100_wor_config.rx_time_reg = idx;
cc1100_wor_config.rx_time_ms = rx_timeouts[idx];
/* If successful, return number of packets in a burst transfer */
return burst_count;
}
/*---------------------------------------------------------------------------*/
// Sequence number buffer management
/*---------------------------------------------------------------------------*/
static bool contains_seq_entry(uint8_t src, uint8_t id)
{
int i;
uint32_t cmp;
timex_t now_timex;
vtimer_now(&now_timex);
for (i = 0; i < MAX_SEQ_BUFFER_SIZE; i++) {
if ((seq_buffer[i].source == src) && (seq_buffer[i].identification == id)) {
/* Check if time stamp is OK */
cmp = (radio_mode == CC1100_MODE_WOR) ? cc1100_wor_config.rx_interval : 16000; /* constant RX ~16ms */
if ((timex_uint64(now_timex) - seq_buffer[i].m_ticks < cmp)) {
return true;
}
else {
seq_buffer[i].source = 0; /* Reset */
}
}
}
return false;
}
static void add_seq_entry(uint8_t src, uint8_t id)
{
/* Remove all entries with given source to avoid short time overflow
* of one bit counter (of the source node). So a valid packet would get
* lost (especially important in constant RX mode). */
int i;
for (i = 0; i < MAX_SEQ_BUFFER_SIZE; i++) {
if (seq_buffer[i].source == src) {
seq_buffer[i].source = 0; /* Reset */
}
}
/* Add new entry */
seq_buffer[seq_buffer_pos].source = src;
seq_buffer[seq_buffer_pos].identification = id;
timex_t now;
vtimer_now(&now);
seq_buffer[seq_buffer_pos].m_ticks = timex_uint64(now);
/* Store 16 bit sequence number of layer 0 for speedup */
last_seq_num = src;
last_seq_num <<= 8;
last_seq_num += id;
seq_buffer_pos++;
if (seq_buffer_pos == MAX_SEQ_BUFFER_SIZE) {
seq_buffer_pos = 0;
}
}
/*---------------------------------------------------------------------------*/
/* CC1100 physical layer send functions */
/*---------------------------------------------------------------------------*/
static void send_link_level_ack(uint8_t dest)
{
uint8_t oldState = radio_state; /* Save old state */
cc1100_packet_layer0_t ack; /* Local packet, don't overwrite */
radio_state = RADIO_SEND_ACK; /* Set state to "Sending ACK" */
cc1100_spi_write_reg(CC1100_MCSM0, 0x08); /* Turn off FS-Autocal */
cc1100_spi_write_reg(CC1100_MCSM1, 0x00); /* TX_OFFMODE = IDLE */
ack.length = 3; /* possible packet in txBuffer!*/
ack.address = dest;
ack.phy_src = rflags.RSSI;
ack.flags = (LAYER_1_PROTOCOL_LL_ACK << 1);
cc1100_send_raw((uint8_t *)&ack, /* IDLE -> TX (88.4 us) */
ack.length + 1);
cc1100_spi_write_reg(CC1100_MCSM0, 0x18); /* Turn on FS-Autocal */
cc1100_spi_write_reg(CC1100_MCSM1, 0x03); /* TX_OFFMODE = RX */
radio_state = oldState; /* Restore state */
cc1100_statistic.acks_send++;
}
static bool send_burst(cc1100_packet_layer0_t *packet, uint8_t retries, uint8_t rtc)
{
int i;
radio_state = RADIO_SEND_BURST;
rflags.LL_ACK = false;
for (i = 1; i <= cc1100_burst_count; i++) {
/*
* Number of bytes to send is:
* length of phy payload (packet->length)
* + size of length field (1 byte)
*/
extern unsigned long hwtimer_now(void);
timer_tick_t t = hwtimer_now() + RTIMER_TICKS(T_PACKET_INTERVAL);
cc1100_send_raw((uint8_t *)packet, packet->length + 1); /* RX -> TX (9.6 us) */
cc1100_statistic.raw_packets_out++;
/* Delay until predefined "send" interval has passed */
timer_tick_t now = hwtimer_now();
if (t > now) {
hwtimer_wait(t - now);
}
/**
* After sending the packet the CC1100 goes automatically
* into RX mode (21.5 us) (listening for an ACK).
* Do not interrupt burst if send to broadcast address (a node may
* have the broadcast address at startup and would stop the burst
* by sending an ACK).
*/
if (rflags.LL_ACK && packet->address != CC1100_BROADCAST_ADDRESS) {
cc1100_statistic.raw_packets_out_acked += i;
break;
}
}
/* No link level ACK -> do retry if retry counter greater zero
* Note: Event broadcast packets can be sent repeatedly if in
* constant RX mode. In WOR mode it is not necessary, so
* set retry count to zero.*/
if (!rflags.LL_ACK && retries > 0) {
return send_burst(packet, retries - 1, rtc + 1);
}
/* Store number of transmission retries */
rflags.RETC = rtc;
rflags.RPS = rtc * cc1100_burst_count + i;
if (i > cc1100_burst_count) {
rflags.RPS--;
}
rflags.TX = false;
/* Go to mode after TX (CONST_RX -> RX, WOR -> WOR) */
cc1100_go_after_tx();
/* Burst from any other node is definitely over */
last_seq_num = 0;
if (packet->address != CC1100_BROADCAST_ADDRESS && !rflags.LL_ACK) {
return false;
}
return true;
}
int cc1100_send(radio_address_t addr, protocol_t protocol, int priority, char *payload, int payload_len)
{
(void) priority;
bool result;
int return_code;
uint8_t address;
uint8_t retries;
/* Lock mutex, nobody else should send now */
cc1100_phy_mutex_lock();
/* TX state machine lock -> no timers (WOR), no packets (only ACKs) */
rflags.TX = true;
/* Set chip to idle state */
cc1100_set_idle();
/* CC1100 radio layer only supports 8-bit addresses */
address = addr;
/* Loopback not supported */
if (address == cc1100_get_address()) {
return_code = RADIO_ADDR_OUT_OF_RANGE;
goto mode_before_final;
}
/* Check address */
if (address > MAX_UID) {
return_code = RADIO_ADDR_OUT_OF_RANGE;
goto mode_before_final;
}
/* Packet too long */
if (payload_len > MAX_DATA_LENGTH) {
return_code = RADIO_PAYLOAD_TOO_LONG;
goto mode_before_final;
}
if (radio_state == RADIO_PWD) {
return_code = RADIO_WRONG_MODE;
goto mode_before_final;
}
/* Set number of transmission retries */
retries = (address == CC1100_BROADCAST_ADDRESS) ?
cc1100_retransmission_count_bc : cc1100_retransmission_count_uc;
memset(tx_buffer.data, 0, MAX_DATA_LENGTH); /* Clean data */
/* TODO: If packets are shorter than max packet size, WOR interval is too long.
* This must be solved in some way. */
tx_buffer.length = 3 + payload_len; /* 3 bytes (A&PS&F) + data length */
tx_buffer.address = address; /* Copy destination address */
tx_buffer.flags = 0x00; /* Set clean state */
tx_buffer.flags = W_FLAGS_PROTOCOL(protocol); /* Copy protocol identifier */
tx_buffer.phy_src = (uint8_t) cc1100_get_address(); /* Copy sender address */
/* Set identification number of packet */
tx_buffer.flags |= rflags.SEQ; /* Set flags.identification (bit 0) */
rflags.SEQ = !rflags.SEQ; /* Toggle value of layer 0 sequence number bit */
memcpy(tx_buffer.data, payload, payload_len); /* Copy data */
/* Send the packet */
cc1100_spi_write_reg(CC1100_MCSM0, 0x08); /* Turn off FS-Autocal */
result = send_burst(&tx_buffer, retries, 0); /* Send raw burst */
return_code = result ? payload_len : RADIO_OP_FAILED;
/* Collect statistics */
if (address != CC1100_BROADCAST_ADDRESS) {
cc1100_statistic.packets_out++;
if (result) {
cc1100_statistic.packets_out_acked++;
}
}
else {
cc1100_statistic.packets_out_broadcast++;
}
goto final;
mode_before_final:
rflags.TX = false;
/* Definitely set secure mode (CONST_RX -> RX, WOR -> WOR) */
cc1100_go_after_tx();
final:
/* Release mutex and return */
cc1100_phy_mutex_unlock();
return return_code;
}
/*---------------------------------------------------------------------------*/
/* RX Event Handler */
/*---------------------------------------------------------------------------*/
bool cc1100_set_packet_monitor(packet_monitor_t monitor)
{
packet_monitor = monitor;
return true;
}
int cc1100_set_packet_handler(protocol_t protocol, packet_handler_t handler)
{
if (protocol > 7) {
return -1; /* Only 3-bit value allowed */
}
return pm_set_handler(&handler_table, protocol, handler);
}
static void cc1100_event_handler_function(void)
{
msg_t m;
while (1) {
if (timex_uint64(cc1100_watch_dog_period) != 0) {
vtimer_remove(&cc1100_watch_dog);
}
/* Test if any resource error has occurred */
if (rflags.KT_RES_ERR) {
rflags.KT_RES_ERR = false;
/* possibly do something, e.g. log error condition */
}
if (m.type == MSG_TIMER) {
uint8_t state;
if (radio_mode == CC1100_MODE_CONSTANT_RX) {
state = cc1100_spi_read_status(CC1100_MARCSTATE) & MARC_STATE;
if ((state < 13 || state > 15) && radio_state == RADIO_RX && !rflags.TX) {
cc1100_statistic.watch_dog_resets++;
if (state != 1) {
cc1100_spi_strobe(CC1100_SIDLE);
}
cc1100_spi_strobe(CC1100_SFRX);
cc1100_go_receive();
}
}
else {
/* Radio mode is WOR, cannot read current MARC state, will */
/* always be IDLE. So do nothing here, e.g. disable watchdog. */
}
}
while (rx_buffer_size > 0) {
rx_buffer_t *packet = &rx_buffer[rx_buffer_head];
protocol_t p = R_FLAGS_PROTOCOL(packet->packet.flags);
if (packet_monitor != NULL) {
packet_monitor((void *)&packet->packet.data, packet->packet.length, p, &packet->info);
}
pm_invoke(&handler_table, p, (void *)&packet->packet.data, MAX_DATA_LENGTH, &packet->info);
dINT();
rx_buffer_size--;
rx_buffer_head++;
if (rx_buffer_head == RX_BUFF_SIZE) {
rx_buffer_head = 0;
}
eINT();
}
dINT();
if (rx_buffer_size == 0) {
if (timex_uint64(cc1100_watch_dog_period) != 0) {
vtimer_set_msg(&cc1100_watch_dog, cc1100_watch_dog_period,
cc1100_event_handler_pid, NULL);
}
msg_receive(&m);
}
eINT();
}
}
/*---------------------------------------------------------------------------*/
/* CC1100 packet (RX) ISR */
/*---------------------------------------------------------------------------*/
void cc1100_phy_rx_handler(void)
{
msg_t m;
m.type = MSG_POLL;
bool dup = false;
bool res = false;
/* Possible packet received, RX -> IDLE (0.1 us) */
rflags.CAA = false;
rflags.MAN_WOR = false;
cc1100_statistic.packets_in++;
/* If WOR timer set, delete it now (new one will be set at end of ISR) */
if (wor_hwtimer_id != -1) {
hwtimer_remove(wor_hwtimer_id);
wor_hwtimer_id = -1;
}
/* Transfer packet into temporary buffer position */
res = cc1100_spi_receive_packet((uint8_t *) & (rx_buffer[rx_buffer_tail].packet), sizeof(cc1100_packet_layer0_t));
if (res) {
/* Get packet pointer and store additional data in packet info structure */
cc1100_packet_layer0_t *p = &(rx_buffer[rx_buffer_tail].packet);
rx_buffer[rx_buffer_tail].info.phy_src = p->phy_src;
rx_buffer[rx_buffer_tail].info.source = p->phy_src;
rx_buffer[rx_buffer_tail].info.destination = p->address;
rx_buffer[rx_buffer_tail].info.rssi = rflags.RSSI;
rx_buffer[rx_buffer_tail].info.lqi = rflags.LQI;
rx_buffer[rx_buffer_tail].info.promiscuous = false;
/* Get protocol and id field out of flags field */
uint8_t protocol = R_FLAGS_PROTOCOL(p->flags);
uint8_t identification = (p->flags & FLAGS_IDENTIFICATION);
/* If received packet was an ACK (here we must be in
* TX lock state, otherwise we don't expect an ACK) */
if (protocol == LAYER_1_PROTOCOL_LL_ACK && rflags.TX) {
/* And packet was for us */
if (p->address == cc1100_get_address()) {
/* Stop the burst */
rflags.LL_ACK = true;
rflags.RSSI_SEND = p->phy_src;
rflags.TCP = (uint32_t)((uint16_t *)p->data);
}
return;
}
else {
/* No ACK received so TOF is unpredictable */
rflags.TOF = 0;
}
/* If we are sending a burst, don't accept packets.
* Only ACKs are processed (for stopping the burst).
* Same if state machine is in TX lock. */
if (radio_state == RADIO_SEND_BURST || rflags.TX) {
cc1100_statistic.packets_in_while_tx++;
return;
}
/* If buffer is currently full -> don't check sequence numbers, send
* ACK and restore state (keep always one position free for temporary packets) */
if (rx_buffer_size >= RX_BUFF_SIZE - 1) {
goto send_ack;
}
/* Build 16 bit sequence number of layer 0 for fast check */
uint16_t new_seq_num = p->phy_src;
new_seq_num <<= 8;
new_seq_num += identification;
/* Duplicate packet detection */
dup = true;
/* If new and last sequence number are the same, then discard packet */
if (last_seq_num != new_seq_num) {
/* Do a more precise check (takes more time) with larger buffer */
if (!contains_seq_entry(p->phy_src, identification)) {
/* Sequence number is new, no duplicate packet */
dup = false;
/* Store sequence number */
add_seq_entry(p->phy_src, identification);
/* Make temporary packet in RX buffer to a "real" packet which is processed */
rx_buffer_size++;
if (rx_buffer_size > cc1100_statistic.rx_buffer_max) {
cc1100_statistic.rx_buffer_max = rx_buffer_size;
}
rx_buffer_tail++;
if (rx_buffer_tail == RX_BUFF_SIZE) {
rx_buffer_tail = 0;
}
/* Send empty message to wake up receiver process.
* Receiver process could already be running (triggered by previous message),
* so function would return 0 and assume the receiver is not waiting but indeed
* all is working fine.*/
msg_send_int(&m, cc1100_event_handler_pid);
cc1100_statistic.packets_in_up++;
}
}
send_ack:
/* If packet was send directly to us, send an ACK packet back to sender.
* But only not if the packet itself was a LL-ACK!*/
if (p->address == cc1100_get_address() && protocol != LAYER_1_PROTOCOL_LL_ACK) {
send_link_level_ack(p->phy_src);
/* After LL-ACK burst is over, reset number */
last_seq_num = 0;
}
/* If duplicate packet detected, clear rxBuffer position */
if (dup) {
cc1100_statistic.packets_in_dups++;
}
/* If packet interrupted this nodes send call,
* don't change anything after this point. */
if (radio_state == RADIO_AIR_FREE_WAITING) {
cc1100_spi_strobe(CC1100_SRX);
hwtimer_wait(IDLE_TO_RX_TIME);
return;
}
/* Valid packet. After a wake-up, the radio should be in IDLE.
* So put CC1100 to RX for WOR_TIMEOUT (have to manually put
* the radio back to sleep/WOR).*/
cc1100_spi_write_reg(CC1100_MCSM0, 0x08); /* Turn off FS-Autocal */
cc1100_spi_write_reg(CC1100_MCSM2, 0x07); /* Configure RX_TIME (until end of packet) */
if (radio_mode == CC1100_MODE_CONSTANT_RX) {
cc1100_spi_strobe(CC1100_SRX);
hwtimer_wait(IDLE_TO_RX_TIME);
radio_state = RADIO_RX;
/* Return here if mode is CONSTANT_RX_MODE */
return;
}
else {
cc1100_spi_strobe(CC1100_SPWD);
radio_state = RADIO_PWD;
}
/* Set hwtimer to put CC1100 back to RX after WOR_TIMEOUT_1 */
wor_hwtimer_id = hwtimer_set(WOR_TIMEOUT_1, cc1100_hwtimer_go_receive_wrapper, NULL);
if (wor_hwtimer_id == -1) {
/* Signal hwtimer resource error, radio stays in RX,
* so no big problem, only energy is wasted. */
rflags.KT_RES_ERR = true;
}
}
else {
/* No ACK received so TOF is unpredictable */
rflags.TOF = 0;
/* CRC false or RX buffer full -> clear RX FIFO in both cases */
last_seq_num = 0; /* Reset for correct burst detection */
cc1100_spi_strobe(CC1100_SIDLE); /* Switch to IDLE (should already be)... */
cc1100_spi_strobe(CC1100_SFRX); /* ...for flushing the RX FIFO */
/* If packet interrupted this nodes send call,
* don't change anything after this point. */
if (radio_state == RADIO_AIR_FREE_WAITING) {
cc1100_spi_strobe(CC1100_SRX);
hwtimer_wait(IDLE_TO_RX_TIME);
return;
}
/* If currently sending, exit here (don't go to RX/WOR) */
if (radio_state == RADIO_SEND_BURST) {
cc1100_statistic.packets_in_while_tx++;
return;
}
/* No valid packet, so go back to RX/WOR as soon as possible */
cc1100_go_receive();
}
}