1
0
mirror of https://github.com/RIOT-OS/RIOT.git synced 2025-01-18 12:52:44 +01:00
RIOT/drivers/at86rf2xx/at86rf2xx_netdev.c

931 lines
31 KiB
C

/*
* Copyright (C) 2018 Kaspar Schleiser <kaspar@schleiser.de>
* 2015 Freie Universität Berlin
*
* This file is subject to the terms and conditions of the GNU Lesser
* General Public License v2.1. See the file LICENSE in the top level
* directory for more details.
*/
/**
* @ingroup drivers_at86rf2xx
* @{
*
* @file
* @brief Netdev adaption for the AT86RF2xx drivers
*
* @author Thomas Eichinger <thomas.eichinger@fu-berlin.de>
* @author Hauke Petersen <hauke.petersen@fu-berlin.de>
* @author Kévin Roussel <Kevin.Roussel@inria.fr>
* @author Martine Lenders <mlenders@inf.fu-berlin.de>
* @author Kaspar Schleiser <kaspar@schleiser.de>
* @author Josua Arndt <jarndt@ias.rwth-aachen.de>
*
* @}
*/
#include <string.h>
#include <assert.h>
#include <errno.h>
#include "iolist.h"
#include "net/eui64.h"
#include "net/ieee802154.h"
#include "net/netdev.h"
#include "net/netdev/ieee802154.h"
#include "at86rf2xx.h"
#include "at86rf2xx_netdev.h"
#include "at86rf2xx_internal.h"
#include "at86rf2xx_registers.h"
#if IS_USED(MODULE_AT86RF2XX_AES_SPI)
#include "at86rf2xx_aes.h"
#endif
#define ENABLE_DEBUG 0
#include "debug.h"
static int _send(netdev_t *netdev, const iolist_t *iolist);
static int _recv(netdev_t *netdev, void *buf, size_t len, void *info);
static int _init(netdev_t *netdev);
static void _isr(netdev_t *netdev);
static int _get(netdev_t *netdev, netopt_t opt, void *val, size_t max_len);
static int _set(netdev_t *netdev, netopt_t opt, const void *val, size_t len);
const netdev_driver_t at86rf2xx_driver = {
.send = _send,
.recv = _recv,
.init = _init,
.isr = _isr,
.get = _get,
.set = _set,
};
#if defined(MODULE_AT86RFA1) || defined(MODULE_AT86RFR2)
/* SOC has radio interrupts, store reference to netdev */
static netdev_t *at86rfmega_dev;
#else
static void _irq_handler(void *arg)
{
netdev_trigger_event_isr(arg);
}
#endif
static int _init(netdev_t *netdev)
{
at86rf2xx_t *dev = (at86rf2xx_t *)netdev;
#if defined(MODULE_AT86RFA1) || defined(MODULE_AT86RFR2)
at86rfmega_dev = netdev;
#else
/* initialize GPIOs */
spi_init_cs(dev->params.spi, dev->params.cs_pin);
gpio_init(dev->params.sleep_pin, GPIO_OUT);
gpio_clear(dev->params.sleep_pin);
gpio_init(dev->params.reset_pin, GPIO_OUT);
gpio_set(dev->params.reset_pin);
gpio_init_int(dev->params.int_pin, GPIO_IN, GPIO_RISING, _irq_handler, dev);
/* Intentionally check if bus can be acquired,
since getbus() drops the return value */
if (spi_acquire(dev->params.spi, dev->params.cs_pin, SPI_MODE_0,
dev->params.spi_clk) < 0) {
DEBUG("[at86rf2xx] error: unable to acquire SPI bus\n");
return -EIO;
}
spi_release(dev->params.spi);
#endif
/* reset hardware into a defined state */
at86rf2xx_hardware_reset(dev);
/* test if the device is responding */
if (at86rf2xx_reg_read(dev, AT86RF2XX_REG__PART_NUM) != AT86RF2XX_PARTNUM) {
DEBUG("[at86rf2xx] error: unable to read correct part number\n");
return -ENOTSUP;
}
/* reset device to default values and put it into RX state */
at86rf2xx_reset(dev);
return 0;
}
static int _send(netdev_t *netdev, const iolist_t *iolist)
{
at86rf2xx_t *dev = (at86rf2xx_t *)netdev;
size_t len = 0;
at86rf2xx_tx_prepare(dev);
/* load packet data into FIFO */
for (const iolist_t *iol = iolist; iol; iol = iol->iol_next) {
/* current packet data + FCS too long */
if ((len + iol->iol_len + 2) > AT86RF2XX_MAX_PKT_LENGTH) {
DEBUG("[at86rf2xx] error: packet too large (%u byte) to be send\n",
(unsigned)len + 2);
return -EOVERFLOW;
}
if (iol->iol_len) {
len = at86rf2xx_tx_load(dev, iol->iol_base, iol->iol_len, len);
}
}
/* send data out directly if pre-loading id disabled */
if (!(dev->flags & AT86RF2XX_OPT_PRELOADING)) {
at86rf2xx_tx_exec(dev);
}
/* return the number of bytes that were actually loaded into the frame
* buffer/send out */
return (int)len;
}
static int _recv(netdev_t *netdev, void *buf, size_t len, void *info)
{
at86rf2xx_t *dev = (at86rf2xx_t *)netdev;
uint8_t phr;
size_t pkt_len;
/* frame buffer protection will be unlocked as soon as at86rf2xx_fb_stop() is called,
* Set receiver to PLL_ON state to be able to free the SPI bus and avoid losing data. */
at86rf2xx_set_state(dev, AT86RF2XX_STATE_PLL_ON);
/* start frame buffer access */
at86rf2xx_fb_start(dev);
/* get the size of the received packet */
#if defined(MODULE_AT86RFA1) || defined(MODULE_AT86RFR2)
phr = TST_RX_LENGTH;
#else
at86rf2xx_fb_read(dev, &phr, 1);
#endif
/* ignore MSB (refer p.80) and subtract length of FCS field */
pkt_len = (phr & 0x7f) - 2;
/* return length when buf == NULL */
if (buf == NULL) {
/* release SPI bus */
at86rf2xx_fb_stop(dev);
/* drop packet, continue receiving */
if (len > 0) {
/* set device back in operation state which was used before last transmission.
* This state is saved in at86rf2xx.c/at86rf2xx_tx_prepare() e.g RX_AACK_ON */
at86rf2xx_set_state(dev, dev->idle_state);
}
return pkt_len;
}
/* not enough space in buf */
if (pkt_len > len) {
at86rf2xx_fb_stop(dev);
/* set device back in operation state which was used before last transmission.
* This state is saved in at86rf2xx.c/at86rf2xx_tx_prepare() e.g RX_AACK_ON */
at86rf2xx_set_state(dev, dev->idle_state);
return -ENOBUFS;
}
/* copy payload */
at86rf2xx_fb_read(dev, (uint8_t *)buf, pkt_len);
/* Ignore FCS but advance fb read - we must give a temporary buffer here,
* as we are not allowed to issue SPI transfers without any buffer */
uint8_t tmp[2];
at86rf2xx_fb_read(dev, tmp, 2);
(void)tmp;
/* AT86RF212B RSSI_BASE_VAL + 1.03 * ED, base varies for diff. modulation and datarates
* AT86RF232 RSSI_BASE_VAL + ED, base -91dBm
* AT86RF233 RSSI_BASE_VAL + ED, base -94dBm
* AT86RF231 RSSI_BASE_VAL + ED, base -91dBm
* AT86RFA1 RSSI_BASE_VAL + ED, base -90dBm
* AT86RFR2 RSSI_BASE_VAL + ED, base -90dBm
*
* AT86RF231 MAN. p.92, 8.4.3 Data Interpretation
* AT86RF232 MAN. p.91, 8.4.3 Data Interpretation
* AT86RF233 MAN. p.102, 8.5.3 Data Interpretation
*
* for performance reasons we ignore the 1.03 scale factor on the 212B,
* which causes a slight error in the values, but the accuracy of the ED
* value is specified as +/- 5 dB, so it should not matter very much in real
* life.
*/
if (info != NULL) {
uint8_t ed = 0;
netdev_ieee802154_rx_info_t *radio_info = info;
at86rf2xx_fb_read(dev, &(radio_info->lqi), 1);
#if defined(MODULE_AT86RF231) || defined(MODULE_AT86RFA1) || defined(MODULE_AT86RFR2)
/* AT86RF231 does not provide ED at the end of the frame buffer, read
* from separate register instead */
at86rf2xx_fb_stop(dev);
ed = at86rf2xx_reg_read(dev, AT86RF2XX_REG__PHY_ED_LEVEL);
#else
at86rf2xx_fb_read(dev, &ed, 1);
at86rf2xx_fb_stop(dev);
#endif
radio_info->rssi = RSSI_BASE_VAL + ed;
DEBUG("[at86rf2xx] LQI:%d high is good, RSSI:%d high is either good or"
"too much interference.\n", radio_info->lqi, radio_info->rssi);
}
else {
at86rf2xx_fb_stop(dev);
}
/* set device back in operation state which was used before last transmission.
* This state is saved in at86rf2xx.c/at86rf2xx_tx_prepare() e.g RX_AACK_ON */
at86rf2xx_set_state(dev, dev->idle_state);
return pkt_len;
}
static int _set_state(at86rf2xx_t *dev, netopt_state_t state)
{
switch (state) {
case NETOPT_STATE_STANDBY:
at86rf2xx_set_state(dev, AT86RF2XX_STATE_TRX_OFF);
break;
case NETOPT_STATE_SLEEP:
at86rf2xx_set_state(dev, AT86RF2XX_STATE_SLEEP);
break;
case NETOPT_STATE_IDLE:
at86rf2xx_set_state(dev, AT86RF2XX_PHY_STATE_RX);
break;
case NETOPT_STATE_TX:
if (dev->flags & AT86RF2XX_OPT_PRELOADING) {
/* The netdev driver ISR switches the transceiver back to the
* previous idle state after a completed TX. If the user tries
* to initiate another transmission (retransmitting the same data)
* without first going to TX_ARET_ON, the command to start TX
* would be ignored, leading to a deadlock in this netdev driver
* thread.
* Additionally, avoids driver thread deadlock when PRELOADING
* is set and the user tries to initiate TX without first calling
* send() to write some frame data.
*/
if (dev->pending_tx == 0) {
/* retransmission of old data, at86rf2xx_tx_prepare normally
* increments this and the ISR for TX_END decrements it, to
* know when to switch back to the idle state. */
++dev->pending_tx;
}
at86rf2xx_set_state(dev, AT86RF2XX_PHY_STATE_TX);
at86rf2xx_tx_exec(dev);
}
break;
case NETOPT_STATE_RESET:
at86rf2xx_hardware_reset(dev);
at86rf2xx_reset(dev);
break;
default:
return -ENOTSUP;
}
return sizeof(netopt_state_t);
}
netopt_state_t _get_state(at86rf2xx_t *dev)
{
switch (at86rf2xx_get_status(dev)) {
case AT86RF2XX_STATE_SLEEP:
return NETOPT_STATE_SLEEP;
case AT86RF2XX_STATE_TRX_OFF:
return NETOPT_STATE_STANDBY;
case AT86RF2XX_PHY_STATE_RX_BUSY:
return NETOPT_STATE_RX;
case AT86RF2XX_PHY_STATE_TX:
case AT86RF2XX_PHY_STATE_TX_BUSY:
return NETOPT_STATE_TX;
case AT86RF2XX_PHY_STATE_RX:
default:
return NETOPT_STATE_IDLE;
}
}
static int _get(netdev_t *netdev, netopt_t opt, void *val, size_t max_len)
{
at86rf2xx_t *dev = (at86rf2xx_t *) netdev;
if (netdev == NULL) {
return -ENODEV;
}
/* getting these options doesn't require the transceiver to be responsive */
switch (opt) {
case NETOPT_CHANNEL_PAGE:
assert(max_len >= sizeof(uint16_t));
((uint8_t *)val)[1] = 0;
((uint8_t *)val)[0] = at86rf2xx_get_page(dev);
return sizeof(uint16_t);
case NETOPT_STATE:
assert(max_len >= sizeof(netopt_state_t));
*((netopt_state_t *)val) = _get_state(dev);
return sizeof(netopt_state_t);
case NETOPT_PRELOADING:
if (dev->flags & AT86RF2XX_OPT_PRELOADING) {
*((netopt_enable_t *)val) = NETOPT_ENABLE;
}
else {
*((netopt_enable_t *)val) = NETOPT_DISABLE;
}
return sizeof(netopt_enable_t);
case NETOPT_PROMISCUOUSMODE:
if (!IS_ACTIVE(AT86RF2XX_BASIC_MODE)) {
if (dev->flags & AT86RF2XX_OPT_PROMISCUOUS) {
*((netopt_enable_t *)val) = NETOPT_ENABLE;
}
else {
*((netopt_enable_t *)val) = NETOPT_DISABLE;
}
return sizeof(netopt_enable_t);
}
break;
case NETOPT_RX_START_IRQ:
*((netopt_enable_t *)val) =
!!(dev->flags & AT86RF2XX_OPT_TELL_RX_START);
return sizeof(netopt_enable_t);
case NETOPT_RX_END_IRQ:
*((netopt_enable_t *)val) =
!!(dev->flags & AT86RF2XX_OPT_TELL_RX_END);
return sizeof(netopt_enable_t);
case NETOPT_TX_START_IRQ:
*((netopt_enable_t *)val) =
!!(dev->flags & AT86RF2XX_OPT_TELL_TX_START);
return sizeof(netopt_enable_t);
case NETOPT_TX_END_IRQ:
*((netopt_enable_t *)val) =
!!(dev->flags & AT86RF2XX_OPT_TELL_TX_END);
return sizeof(netopt_enable_t);
case NETOPT_CSMA:
if (!IS_ACTIVE(AT86RF2XX_BASIC_MODE)) {
*((netopt_enable_t *)val) =
!!(dev->flags & AT86RF2XX_OPT_CSMA);
return sizeof(netopt_enable_t);
}
break;
/* Only radios with the XAH_CTRL_2 register support frame retry reporting */
#if AT86RF2XX_HAVE_RETRIES
case NETOPT_TX_RETRIES_NEEDED:
if (!IS_ACTIVE(AT86RF2XX_BASIC_MODE)) {
assert(max_len >= sizeof(uint8_t));
*((uint8_t *)val) = dev->tx_retries;
return sizeof(uint8_t);
}
break;
#endif
default:
/* Can still be handled in second switch */
break;
}
int res;
if (((res = netdev_ieee802154_get((netdev_ieee802154_t *)netdev, opt, val,
max_len)) >= 0) || (res != -ENOTSUP)) {
return res;
}
uint8_t old_state = at86rf2xx_get_status(dev);
/* temporarily wake up if sleeping */
if (old_state == AT86RF2XX_STATE_SLEEP) {
at86rf2xx_assert_awake(dev);
}
/* these options require the transceiver to be not sleeping*/
switch (opt) {
case NETOPT_TX_POWER:
assert(max_len >= sizeof(int16_t));
*((uint16_t *)val) = at86rf2xx_get_txpower(dev);
res = sizeof(uint16_t);
break;
case NETOPT_RETRANS:
if (!IS_ACTIVE(AT86RF2XX_BASIC_MODE)) {
assert(max_len >= sizeof(uint8_t));
*((uint8_t *)val) = at86rf2xx_get_max_retries(dev);
res = sizeof(uint8_t);
}
break;
case NETOPT_CSMA_RETRIES:
if (!IS_ACTIVE(AT86RF2XX_BASIC_MODE)) {
assert(max_len >= sizeof(uint8_t));
*((uint8_t *)val) = at86rf2xx_get_csma_max_retries(dev);
res = sizeof(uint8_t);
}
break;
case NETOPT_CCA_THRESHOLD:
assert(max_len >= sizeof(int8_t));
*((int8_t *)val) = at86rf2xx_get_cca_threshold(dev);
res = sizeof(int8_t);
break;
case NETOPT_IS_CHANNEL_CLR:
assert(max_len >= sizeof(netopt_enable_t));
*((netopt_enable_t *)val) = at86rf2xx_cca(dev);
res = sizeof(netopt_enable_t);
break;
case NETOPT_LAST_ED_LEVEL:
assert(max_len >= sizeof(int8_t));
*((int8_t *)val) = at86rf2xx_get_ed_level(dev);
res = sizeof(int8_t);
break;
case NETOPT_AUTOACK:
if (!IS_ACTIVE(AT86RF2XX_BASIC_MODE)) {
assert(max_len >= sizeof(netopt_enable_t));
uint8_t tmp = at86rf2xx_reg_read(dev, AT86RF2XX_REG__CSMA_SEED_1);
*((netopt_enable_t *)val) = (tmp & AT86RF2XX_CSMA_SEED_1__AACK_DIS_ACK) ? false : true;
res = sizeof(netopt_enable_t);
}
break;
#ifdef MODULE_NETDEV_IEEE802154_OQPSK
case NETOPT_IEEE802154_PHY:
assert(max_len >= sizeof(int8_t));
*(uint8_t *)val = at86rf2xx_get_phy_mode(dev);
return sizeof(uint8_t);
case NETOPT_OQPSK_RATE:
assert(max_len >= sizeof(int8_t));
*(uint8_t *)val = at86rf2xx_get_rate(dev);
return sizeof(uint8_t);
#endif /* MODULE_NETDEV_IEEE802154_OQPSK */
default:
res = -ENOTSUP;
break;
}
/* go back to sleep if were sleeping */
if (old_state == AT86RF2XX_STATE_SLEEP) {
at86rf2xx_set_state(dev, AT86RF2XX_STATE_SLEEP);
}
return res;
}
static int _set(netdev_t *netdev, netopt_t opt, const void *val, size_t len)
{
at86rf2xx_t *dev = (at86rf2xx_t *) netdev;
uint8_t old_state = at86rf2xx_get_status(dev);
int res = -ENOTSUP;
if (dev == NULL) {
return -ENODEV;
}
/* temporarily wake up if sleeping and opt != NETOPT_STATE.
* opt != NETOPT_STATE check prevents redundant wake-up.
* when opt == NETOPT_STATE, at86rf2xx_set_state() will wake up the
* radio if needed. */
if ((old_state == AT86RF2XX_STATE_SLEEP) && (opt != NETOPT_STATE)) {
at86rf2xx_assert_awake(dev);
}
switch (opt) {
case NETOPT_ADDRESS:
assert(len == sizeof(network_uint16_t));
at86rf2xx_set_addr_short(dev, val);
/* don't set res to set netdev_ieee802154_t::short_addr */
break;
case NETOPT_ADDRESS_LONG:
assert(len == sizeof(eui64_t));
at86rf2xx_set_addr_long(dev, val);
/* don't set res to set netdev_ieee802154_t::long_addr */
break;
case NETOPT_NID:
assert(len == sizeof(uint16_t));
at86rf2xx_set_pan(dev, *((const uint16_t *)val));
/* don't set res to set netdev_ieee802154_t::pan */
break;
case NETOPT_CHANNEL:
assert(len == sizeof(uint16_t));
uint8_t chan = (((const uint16_t *)val)[0]) & UINT8_MAX;
#if AT86RF2XX_MIN_CHANNEL
if (chan < AT86RF2XX_MIN_CHANNEL || chan > AT86RF2XX_MAX_CHANNEL) {
#else
if (chan > AT86RF2XX_MAX_CHANNEL) {
#endif /* AT86RF2XX_MIN_CHANNEL */
res = -EINVAL;
break;
}
at86rf2xx_set_chan(dev, chan);
/* don't set res to set netdev_ieee802154_t::chan */
break;
case NETOPT_CHANNEL_PAGE:
assert(len == sizeof(uint16_t));
uint8_t page = (((const uint16_t *)val)[0]) & UINT8_MAX;
#ifdef MODULE_AT86RF212B
if ((page != 0) && (page != 2)) {
res = -EINVAL;
}
else {
at86rf2xx_set_page(dev, page);
res = sizeof(uint16_t);
}
#else
/* rf23x only supports page 0, no need to configure anything in the driver. */
if (page != 0) {
res = -EINVAL;
}
else {
res = sizeof(uint16_t);
}
#endif
break;
case NETOPT_TX_POWER:
assert(len <= sizeof(int16_t));
at86rf2xx_set_txpower(dev, *((const int16_t *)val));
res = sizeof(uint16_t);
break;
case NETOPT_STATE:
assert(len <= sizeof(netopt_state_t));
res = _set_state(dev, *((const netopt_state_t *)val));
break;
case NETOPT_AUTOACK:
if (!IS_ACTIVE(AT86RF2XX_BASIC_MODE)) {
at86rf2xx_set_option(dev, AT86RF2XX_OPT_AUTOACK,
((const bool *)val)[0]);
res = sizeof(netopt_enable_t);
}
break;
case NETOPT_ACK_PENDING:
if (!IS_ACTIVE(AT86RF2XX_BASIC_MODE)) {
at86rf2xx_set_option(dev, AT86RF2XX_OPT_ACK_PENDING,
((const bool *)val)[0]);
res = sizeof(netopt_enable_t);
}
break;
case NETOPT_RETRANS:
if (!IS_ACTIVE(AT86RF2XX_BASIC_MODE)) {
assert(len <= sizeof(uint8_t));
at86rf2xx_set_max_retries(dev, *((const uint8_t *)val));
res = sizeof(uint8_t);
}
break;
case NETOPT_PRELOADING:
at86rf2xx_set_option(dev, AT86RF2XX_OPT_PRELOADING,
((const bool *)val)[0]);
res = sizeof(netopt_enable_t);
break;
case NETOPT_PROMISCUOUSMODE:
if (!IS_ACTIVE(AT86RF2XX_BASIC_MODE)) {
at86rf2xx_set_option(dev, AT86RF2XX_OPT_PROMISCUOUS,
((const bool *)val)[0]);
res = sizeof(netopt_enable_t);
}
break;
case NETOPT_RX_START_IRQ:
at86rf2xx_set_option(dev, AT86RF2XX_OPT_TELL_RX_START,
((const bool *)val)[0]);
res = sizeof(netopt_enable_t);
break;
case NETOPT_RX_END_IRQ:
at86rf2xx_set_option(dev, AT86RF2XX_OPT_TELL_RX_END,
((const bool *)val)[0]);
res = sizeof(netopt_enable_t);
break;
case NETOPT_TX_START_IRQ:
at86rf2xx_set_option(dev, AT86RF2XX_OPT_TELL_TX_START,
((const bool *)val)[0]);
res = sizeof(netopt_enable_t);
break;
case NETOPT_TX_END_IRQ:
at86rf2xx_set_option(dev, AT86RF2XX_OPT_TELL_TX_END,
((const bool *)val)[0]);
res = sizeof(netopt_enable_t);
break;
case NETOPT_CSMA:
if (!IS_ACTIVE(AT86RF2XX_BASIC_MODE)) {
at86rf2xx_set_option(dev, AT86RF2XX_OPT_CSMA,
((const bool *)val)[0]);
res = sizeof(netopt_enable_t);
}
break;
case NETOPT_CSMA_RETRIES:
if (!IS_ACTIVE(AT86RF2XX_BASIC_MODE)) {
assert(len <= sizeof(uint8_t));
if (!(dev->flags & AT86RF2XX_OPT_CSMA) ||
(*((uint8_t *)val) > 5)) {
/* If CSMA is disabled, don't allow setting retries */
res = -EINVAL;
}
else {
at86rf2xx_set_csma_max_retries(dev, *((const uint8_t *)val));
res = sizeof(uint8_t);
}
}
break;
case NETOPT_CCA_THRESHOLD:
assert(len <= sizeof(int8_t));
at86rf2xx_set_cca_threshold(dev, *((const int8_t *)val));
res = sizeof(int8_t);
break;
#ifdef MODULE_NETDEV_IEEE802154_OQPSK
case NETOPT_OQPSK_RATE:
assert(len <= sizeof(int8_t));
if (at86rf2xx_set_rate(dev, *((const uint8_t *)val)) < 0) {
res = -EINVAL;
} else {
res = sizeof(uint8_t);
}
break;
#endif /* MODULE_NETDEV_IEEE802154_OQPSK */
#if IS_USED(MODULE_AT86RF2XX_COMMON_AES_SPI) && \
IS_USED(MODULE_IEEE802154_SECURITY)
case NETOPT_ENCRYPTION_KEY:
assert(len >= IEEE802154_SEC_KEY_LENGTH);
at86rf2xx_aes_key_write_encrypt(dev, val);
if (memcmp(dev->netdev.sec_ctx.cipher.context.context, val, len)) {
/* If the key changes, the frame conter can be reset to 0*/
dev->netdev.sec_ctx.frame_counter = 0;
}
memcpy(dev->netdev.sec_ctx.cipher.context.context, val,
IEEE802154_SEC_KEY_LENGTH);
res = IEEE802154_SEC_KEY_LENGTH;
break;
#endif /* IS_USED(MODULE_AT86RF2XX_AES_SPI) && \
IS_USED(MODULE_IEEE802154_SECURITY) */
default:
break;
}
/* go back to sleep if were sleeping and state hasn't been changed */
if ((old_state == AT86RF2XX_STATE_SLEEP)
&& (opt != NETOPT_STATE)) {
at86rf2xx_set_state(dev, AT86RF2XX_STATE_SLEEP);
}
if (res == -ENOTSUP) {
res = netdev_ieee802154_set((netdev_ieee802154_t *)netdev, opt, val, len);
}
return res;
}
static void _isr_send_complete(at86rf2xx_t *dev, uint8_t trac_status)
{
netdev_t *netdev = &dev->netdev.netdev;
if (IS_ACTIVE(AT86RF2XX_BASIC_MODE)) {
netdev->event_callback(netdev, NETDEV_EVENT_TX_COMPLETE);
return;
}
/* Only radios with the XAH_CTRL_2 register support frame retry reporting */
#if AT86RF2XX_HAVE_RETRIES && defined(AT86RF2XX_REG__XAH_CTRL_2)
dev->tx_retries = (at86rf2xx_reg_read(dev, AT86RF2XX_REG__XAH_CTRL_2)
& AT86RF2XX_XAH_CTRL_2__ARET_FRAME_RETRIES_MASK) >>
AT86RF2XX_XAH_CTRL_2__ARET_FRAME_RETRIES_OFFSET;
#endif
DEBUG("[at86rf2xx] EVT - TX_END\n");
if (netdev->event_callback && (dev->flags & AT86RF2XX_OPT_TELL_TX_END)) {
switch (trac_status) {
#ifdef MODULE_OPENTHREAD
case AT86RF2XX_TRX_STATE__TRAC_SUCCESS:
netdev->event_callback(netdev, NETDEV_EVENT_TX_COMPLETE);
DEBUG("[at86rf2xx] TX SUCCESS\n");
break;
case AT86RF2XX_TRX_STATE__TRAC_SUCCESS_DATA_PENDING:
netdev->event_callback(netdev, NETDEV_EVENT_TX_COMPLETE_DATA_PENDING);
DEBUG("[at86rf2xx] TX SUCCESS DATA PENDING\n");
break;
#else
case AT86RF2XX_TRX_STATE__TRAC_SUCCESS:
case AT86RF2XX_TRX_STATE__TRAC_SUCCESS_DATA_PENDING:
netdev->event_callback(netdev, NETDEV_EVENT_TX_COMPLETE);
DEBUG("[at86rf2xx] TX SUCCESS\n");
break;
#endif
case AT86RF2XX_TRX_STATE__TRAC_NO_ACK:
netdev->event_callback(netdev, NETDEV_EVENT_TX_NOACK);
DEBUG("[at86rf2xx] TX NO_ACK\n");
break;
case AT86RF2XX_TRX_STATE__TRAC_CHANNEL_ACCESS_FAILURE:
netdev->event_callback(netdev, NETDEV_EVENT_TX_MEDIUM_BUSY);
DEBUG("[at86rf2xx] TX_CHANNEL_ACCESS_FAILURE\n");
break;
default:
DEBUG("[at86rf2xx] Unhandled TRAC_STATUS: %d\n",
trac_status >> 5);
}
}
}
static inline void _isr_recv_complete(netdev_t *netdev)
{
at86rf2xx_t *dev = (at86rf2xx_t *) netdev;
if (IS_ACTIVE(AT86RF2XX_BASIC_MODE)) {
uint8_t phy_status = at86rf2xx_reg_read(dev, AT86RF2XX_REG__PHY_RSSI);
bool crc_ok = phy_status & AT86RF2XX_PHY_RSSI_MASK__RX_CRC_VALID;
if (crc_ok) {
netdev->event_callback(netdev, NETDEV_EVENT_RX_COMPLETE);
}
else {
netdev->event_callback(netdev, NETDEV_EVENT_CRC_ERROR);
}
}
else {
netdev->event_callback(netdev, NETDEV_EVENT_RX_COMPLETE);
}
}
static void _isr(netdev_t *netdev)
{
at86rf2xx_t *dev = (at86rf2xx_t *) netdev;
uint8_t irq_mask;
uint8_t state;
uint8_t trac_status;
/* If transceiver is sleeping register access is impossible and frames are
* lost anyway, so return immediately.
*/
state = at86rf2xx_get_status(dev);
if (state == AT86RF2XX_STATE_SLEEP) {
return;
}
/* read (consume) device status */
#if defined(MODULE_AT86RFA1) || defined(MODULE_AT86RFR2)
irq_mask = dev->irq_status;
dev->irq_status = 0;
#else
irq_mask = at86rf2xx_reg_read(dev, AT86RF2XX_REG__IRQ_STATUS);
#endif
trac_status = at86rf2xx_reg_read(dev, AT86RF2XX_REG__TRX_STATE)
& AT86RF2XX_TRX_STATE_MASK__TRAC;
if (irq_mask & AT86RF2XX_IRQ_STATUS_MASK__RX_START) {
netdev->event_callback(netdev, NETDEV_EVENT_RX_STARTED);
DEBUG("[at86rf2xx] EVT - RX_START\n");
}
if (irq_mask & AT86RF2XX_IRQ_STATUS_MASK__TRX_END) {
if ((state == AT86RF2XX_PHY_STATE_RX)
|| (state == AT86RF2XX_PHY_STATE_RX_BUSY)) {
DEBUG("[at86rf2xx] EVT - RX_END\n");
if (!(dev->flags & AT86RF2XX_OPT_TELL_RX_END)) {
return;
}
_isr_recv_complete(netdev);
}
else if (state == AT86RF2XX_PHY_STATE_TX) {
/* check for more pending TX calls and return to idle state if
* there are none */
assert(dev->pending_tx != 0);
/* Radio is idle, any TX transaction is done */
dev->pending_tx = 0;
at86rf2xx_set_state(dev, dev->idle_state);
DEBUG("[at86rf2xx] return to idle state 0x%x\n", dev->idle_state);
_isr_send_complete(dev, trac_status);
}
/* Only the case when an interrupt was received and the radio is busy
* with a next PDU transmission when _isr is called.
* dev->pending == 1 means a receive and immediately a send happened.
* The receive is discarded as the send already overwrote the internal
* buffer.
* dev->pending == 2 means two transmits occurred and this is the isr for
* the first.
*/
else if (state == AT86RF2XX_PHY_STATE_TX_BUSY) {
if (dev->pending_tx > 1) {
dev->pending_tx--;
_isr_send_complete(dev, trac_status);
}
}
}
}
#if defined(MODULE_AT86RFA1) || defined(MODULE_AT86RFR2)
/**
* @brief ISR for transceiver's TX_START interrupt
*
* In procedure TX_ARET the TRX24_TX_START interrupt is issued separately for every
* frame transmission and frame retransmission.
* Indicates the frame start of a transmitted acknowledge frame in procedure RX_AACK.
*
* Flow Diagram Manual p. 52 / 63
*/
#if AT86RF2XX_HAVE_RETRIES
ISR(TRX24_TX_START_vect){
/* __enter_isr(); is not necessary as there is nothing which causes a
* thread_yield and the interrupt can not be interrupted by an other ISR */
at86rf2xx_t *dev = (at86rf2xx_t *) at86rfmega_dev;
dev->tx_retries++;
}
#endif
/**
* @brief ISR for transceiver's receive end interrupt
*
* Is triggered when valid data is received. FCS check passed.
* Save IRQ status and inform upper layer of data reception.
*
* Flow Diagram Manual p. 52 / 63
*/
ISR(TRX24_RX_END_vect, ISR_BLOCK)
{
atmega_enter_isr();
uint8_t status = *AT86RF2XX_REG__TRX_STATE & AT86RF2XX_TRX_STATUS_MASK__TRX_STATUS;
DEBUG("TRX24_RX_END 0x%x\n", status);
((at86rf2xx_t *)at86rfmega_dev)->irq_status |= AT86RF2XX_IRQ_STATUS_MASK__RX_END;
/* Call upper layer to process received data */
netdev_trigger_event_isr(at86rfmega_dev);
atmega_exit_isr();
}
/**
* @brief Transceiver Frame Address Match, indicates incoming frame
*
* Is triggered when Frame with valid Address is received.
* Can be used to wake up MCU from sleep, etc.
*
* Flow Diagram Manual p. 52 / 63
*/
ISR(TRX24_XAH_AMI_vect, ISR_BLOCK)
{
atmega_enter_isr();
DEBUG("TRX24_XAH_AMI\n");
((at86rf2xx_t *)at86rfmega_dev)->irq_status |= AT86RF2XX_IRQ_STATUS_MASK__AMI;
atmega_exit_isr();
}
/**
* @brief ISR for transceiver's transmit end interrupt
*
* Is triggered when data or when acknowledge frames where send.
*
* Flow Diagram Manual p. 52 / 63
*/
ISR(TRX24_TX_END_vect, ISR_BLOCK)
{
atmega_enter_isr();
at86rf2xx_t *dev = (at86rf2xx_t *) at86rfmega_dev;
uint8_t status = *AT86RF2XX_REG__TRX_STATE & AT86RF2XX_TRX_STATUS_MASK__TRX_STATUS;
DEBUG("TRX24_TX_END 0x%x\n", status);
/* only inform upper layer when a transmission was done,
* not for sending acknowledge frames if data was received. */
if (status != AT86RF2XX_PHY_STATE_RX) {
dev->irq_status |= AT86RF2XX_IRQ_STATUS_MASK__TX_END;
/* Call upper layer to process if data was send successful */
netdev_trigger_event_isr(at86rfmega_dev);
}
atmega_exit_isr();
}
#endif /* MODULE_AT86RFA1 || MODULE_AT86RFR2 */