mirror of
https://github.com/RIOT-OS/RIOT.git
synced 2025-01-18 12:52:44 +01:00
05419a5547
- Imported files from secure micro mesh library - added Makefiles and included libs into sys/Makefile
352 lines
11 KiB
C
352 lines
11 KiB
C
/*
|
|
* Copyright (C) 2013 Freie Universität Berlin, Computer Systems & Telematics
|
|
*
|
|
* This source code is licensed under the LGPLv2 license,
|
|
* See the file LICENSE for more details.
|
|
*/
|
|
|
|
/**
|
|
* @ingroup sys_crypto
|
|
* @{
|
|
*
|
|
* @file skipjack.c
|
|
* @brief implementation of the SkipJack Cipher-Algorithm
|
|
*
|
|
* @author Freie Universitaet Berlin, Computer Systems & Telematics
|
|
* @author Nicolai Schmittberger <nicolai.schmittberger@fu-berlin.de>
|
|
* @author Zakaria Kasmi <zkasmi@inf.fu-berlin.de>
|
|
* @author Naveen Sastry
|
|
*
|
|
* @}
|
|
*/
|
|
|
|
/*
|
|
* From the NIST description of SkipJack.
|
|
*/
|
|
// our context: we just expand the key to 20 bytes.
|
|
//
|
|
// we have two options for the expansion:
|
|
// 1. no expansion. advantage: 10byte context. disadvantage: mucks up
|
|
// the G box code with ifs / mods. Alternatively adds lots of code and
|
|
// muckiness.
|
|
// 2. expand key to 128 bytes. Makes G boxes easy to write, and minimal
|
|
// code expansion. disadvantage: wasted memory
|
|
// 3. expand key to 20 bytes. G boxes still simple, the encode and decode
|
|
// functions are a little more complicated, but still more or less
|
|
// managable. this is what we've implemented.
|
|
|
|
#include <stdio.h>
|
|
#include <stdarg.h>
|
|
#include <string.h>
|
|
#include <stdlib.h>
|
|
#include <stdint.h>
|
|
#include "crypto/ciphers.h"
|
|
#include "crypto/skipjack.h"
|
|
|
|
|
|
/**
|
|
* @brief Define a fixed block size of 8 bytes
|
|
*/
|
|
#define BLOCK_SIZE (8U)
|
|
|
|
/**
|
|
* @brief Interface to the skipjack cipher
|
|
*/
|
|
block_cipher_interface_t skipjack_interface = {
|
|
"SkipJack\0",
|
|
skipjack_init,
|
|
skipjack_encrypt,
|
|
skipjack_decrypt,
|
|
skipjack_setup_key,
|
|
skipjack_get_preferred_block_size
|
|
};
|
|
|
|
// F-BOX
|
|
// It can live in either RAM (faster access) or program memory (save ram,
|
|
// but slower access). The type CRYPTO_TABLE_TYPE, defined in crypto.h
|
|
// defines where we drop the table and how we access it. This is necessary
|
|
// to compile for the PC target since it doesn't support tables in
|
|
// program memory the same way.
|
|
static const uint8_t SJ_F[] /*__attribute__((C))*/ = {
|
|
0xA3, 0xD7, 0x09, 0x83, 0xF8, 0x48, 0xF6, 0xF4, 0xB3, 0x21, 0x15, 0x78,
|
|
0x99, 0xB1, 0xAF, 0xF9, 0xE7, 0x2D, 0x4D, 0x8A, 0xCE, 0x4C, 0xCA, 0x2E,
|
|
0x52, 0x95, 0xD9, 0x1E, 0x4E, 0x38, 0x44, 0x28, 0x0A, 0xDF, 0x02, 0xA0,
|
|
0x17, 0xF1, 0x60, 0x68, 0x12, 0xB7, 0x7A, 0xC3, 0xE9, 0xFA, 0x3D, 0x53,
|
|
0x96, 0x84, 0x6B, 0xBA, 0xF2, 0x63, 0x9A, 0x19, 0x7C, 0xAE, 0xE5, 0xF5,
|
|
0xF7, 0x16, 0x6A, 0xA2, 0x39, 0xB6, 0x7B, 0x0F, 0xC1, 0x93, 0x81, 0x1B,
|
|
0xEE, 0xB4, 0x1A, 0xEA, 0xD0, 0x91, 0x2F, 0xB8, 0x55, 0xB9, 0xDA, 0x85,
|
|
0x3F, 0x41, 0xBF, 0xE0, 0x5A, 0x58, 0x80, 0x5F, 0x66, 0x0B, 0xD8, 0x90,
|
|
0x35, 0xD5, 0xC0, 0xA7, 0x33, 0x06, 0x65, 0x69, 0x45, 0x00, 0x94, 0x56,
|
|
0x6D, 0x98, 0x9B, 0x76, 0x97, 0xFC, 0xB2, 0xC2, 0xB0, 0xFE, 0xDB, 0x20,
|
|
0xE1, 0xEB, 0xD6, 0xE4, 0xDD, 0x47, 0x4A, 0x1D, 0x42, 0xED, 0x9E, 0x6E,
|
|
0x49, 0x3C, 0xCD, 0x43, 0x27, 0xD2, 0x07, 0xD4, 0xDE, 0xC7, 0x67, 0x18,
|
|
0x89, 0xCB, 0x30, 0x1F, 0x8D, 0xC6, 0x8F, 0xAA, 0xC8, 0x74, 0xDC, 0xC9,
|
|
0x5D, 0x5C, 0x31, 0xA4, 0x70, 0x88, 0x61, 0x2C, 0x9F, 0x0D, 0x2B, 0x87,
|
|
0x50, 0x82, 0x54, 0x64, 0x26, 0x7D, 0x03, 0x40, 0x34, 0x4B, 0x1C, 0x73,
|
|
0xD1, 0xC4, 0xFD, 0x3B, 0xCC, 0xFB, 0x7F, 0xAB, 0xE6, 0x3E, 0x5B, 0xA5,
|
|
0xAD, 0x04, 0x23, 0x9C, 0x14, 0x51, 0x22, 0xF0, 0x29, 0x79, 0x71, 0x7E,
|
|
0xFF, 0x8C, 0x0E, 0xE2, 0x0C, 0xEF, 0xBC, 0x72, 0x75, 0x6F, 0x37, 0xA1,
|
|
0xEC, 0xD3, 0x8E, 0x62, 0x8B, 0x86, 0x10, 0xE8, 0x08, 0x77, 0x11, 0xBE,
|
|
0x92, 0x4F, 0x24, 0xC5, 0x32, 0x36, 0x9D, 0xCF, 0xF3, 0xA6, 0xBB, 0xAC,
|
|
0x5E, 0x6C, 0xA9, 0x13, 0x57, 0x25, 0xB5, 0xE3, 0xBD, 0xA8, 0x3A, 0x01,
|
|
0x05, 0x59, 0x2A, 0x46
|
|
};
|
|
|
|
|
|
int skipjack_init(cipher_context_t *context, uint8_t blockSize, uint8_t keySize,
|
|
uint8_t *key)
|
|
{
|
|
// 8 byte blocks only
|
|
if (blockSize != BLOCK_SIZE) {
|
|
return 0;
|
|
}
|
|
|
|
return skipjack_setup_key(context, key, keySize);
|
|
}
|
|
|
|
/**
|
|
* @brief convert 2x uint8_t to uint16_t
|
|
*
|
|
* @param c pointer to the 2x uint8_t input
|
|
* @param s pointer to the resulting uint16_t
|
|
*
|
|
*/
|
|
static void c2sM(uint8_t *c, uint16_t *s)
|
|
{
|
|
memcpy(s, c, sizeof(uint16_t));
|
|
return;
|
|
}
|
|
|
|
/**
|
|
* @brief convert one uint16_t to 2x uint8_t
|
|
*
|
|
* @param s pointer to the uint16_t input
|
|
* @param c pointer to the first resulting uint8_ts
|
|
*/
|
|
static void s2cM(uint16_t s, uint8_t *c)
|
|
{
|
|
memcpy(c, &s, sizeof(uint16_t));
|
|
return;
|
|
}
|
|
|
|
|
|
int skipjack_encrypt(cipher_context_t *context, uint8_t *plainBlock,
|
|
uint8_t *cipherBlock)
|
|
{
|
|
|
|
// prologue 10 pushs = 20 cycles
|
|
/*register*/ uint8_t counter = 1;
|
|
/*register*/ uint8_t *skey = ((skipjack_context_t *)context->context)->skey;
|
|
/*register*/ uint16_t w1, w2, w3, w4, tmp;
|
|
/*register*/ uint8_t bLeft, bRight;
|
|
|
|
//dumpBuffer("SkipJack.encrypt: plainBlock", plainBlock, 8);
|
|
|
|
c2sM(plainBlock, &w1);
|
|
plainBlock += 2;
|
|
c2sM(plainBlock, &w2);
|
|
plainBlock += 2;
|
|
c2sM(plainBlock, &w3);
|
|
plainBlock += 2;
|
|
c2sM(plainBlock, &w4);
|
|
plainBlock += 2;
|
|
|
|
/*
|
|
* code if we had expanded key to 128 bytes. this is what the code below
|
|
* does, but after every 5 operations, it resets the where we are
|
|
* in the key back to the beginning of the skey. so our loops end up
|
|
* looking a little funny.
|
|
*
|
|
* while (counter < 9)
|
|
* RULE_A(skey, w1, w2, w3, w4, counter, tmp, bLeft, bRight );
|
|
* while (counter < 17)
|
|
* RULE_B(skey, w1, w2, w3, w4, counter, tmp, bLeft, bRight );
|
|
* while (counter < 25)
|
|
* RULE_A(skey, w1, w2, w3, w4, counter, tmp, bLeft, bRight );
|
|
* while (counter < 33)
|
|
* RULE_B(skey, w1, w2, w3, w4, counter, tmp, bLeft, bRight );
|
|
*/
|
|
|
|
while (counter < 6) { // 5x
|
|
RULE_A(skey, w1, w2, w3, w4, counter, tmp, bLeft, bRight);
|
|
}
|
|
|
|
skey = ((skipjack_context_t *)context->context)->skey;
|
|
|
|
while (counter < 9) { // 3x
|
|
RULE_A(skey, w1, w2, w3, w4, counter, tmp, bLeft, bRight);
|
|
}
|
|
|
|
while (counter < 11) { // 2x
|
|
RULE_B(skey, w1, w2, w3, w4, counter, tmp, bLeft, bRight);
|
|
}
|
|
|
|
skey = ((skipjack_context_t *)context->context)->skey;
|
|
|
|
while (counter < 16) { // 5x
|
|
RULE_B(skey, w1, w2, w3, w4, counter, tmp, bLeft, bRight);
|
|
}
|
|
|
|
skey = ((skipjack_context_t *)context->context)->skey;
|
|
// 1x
|
|
RULE_B(skey, w1, w2, w3, w4, counter, tmp, bLeft, bRight);
|
|
|
|
while (counter < 21) { // 4x
|
|
RULE_A(skey, w1, w2, w3, w4, counter, tmp, bLeft, bRight);
|
|
}
|
|
|
|
skey = ((skipjack_context_t *)context->context)->skey;
|
|
|
|
while (counter < 25) { // 4x
|
|
RULE_A(skey, w1, w2, w3, w4, counter, tmp, bLeft, bRight);
|
|
}
|
|
|
|
// 1x
|
|
RULE_B(skey, w1, w2, w3, w4, counter, tmp, bLeft, bRight);
|
|
skey = ((skipjack_context_t *)context->context)->skey;
|
|
|
|
while (counter < 31) { // 5x
|
|
RULE_B(skey, w1, w2, w3, w4, counter, tmp, bLeft, bRight);
|
|
}
|
|
|
|
skey = ((skipjack_context_t *)context->context)->skey;
|
|
|
|
while (counter < 33) { // 2x
|
|
RULE_B(skey, w1, w2, w3, w4, counter, tmp, bLeft, bRight);
|
|
}
|
|
|
|
s2cM(w1, cipherBlock);
|
|
cipherBlock += 2;
|
|
s2cM(w2, cipherBlock);
|
|
cipherBlock += 2;
|
|
s2cM(w3, cipherBlock);
|
|
cipherBlock += 2;
|
|
s2cM(w4, cipherBlock);
|
|
cipherBlock += 2;
|
|
|
|
return 1;
|
|
}
|
|
|
|
|
|
int skipjack_decrypt(cipher_context_t *context, uint8_t *cipherBlock,
|
|
uint8_t *plainBlock)
|
|
{
|
|
/*register*/ uint8_t counter = 32;
|
|
/*register*/ uint8_t *skey = ((skipjack_context_t *)context->context)->skey + 4;
|
|
/*register*/ uint16_t w1, w2, w3, w4, tmp;
|
|
/*register*/ uint8_t bLeft, bRight;
|
|
|
|
//dumpBuffer("SkipJack.decrypt: cipherBlock", cipherBlock, 8);
|
|
|
|
c2sM(cipherBlock, &w1);
|
|
cipherBlock += 2;
|
|
c2sM(cipherBlock, &w2);
|
|
cipherBlock += 2;
|
|
c2sM(cipherBlock, &w3);
|
|
cipherBlock += 2;
|
|
c2sM(cipherBlock, &w4);
|
|
|
|
/*
|
|
// code if we had expanded key to 128 bytes. this is what the code below
|
|
// does, but after every 5 operations, it resets the where we are
|
|
// in the key back to the beginning of the skey. so our loops end up
|
|
// looking a little funny.
|
|
|
|
while (counter > 24)
|
|
RULE_B_INV(skey, w1, w2, w3, w4, counter, tmp, bLeft, bRight );
|
|
while (counter > 16)
|
|
RULE_A_INV(skey, w1, w2, w3, w4, counter, tmp, bLeft, bRight );
|
|
while (counter > 8)
|
|
RULE_B_INV(skey, w1, w2, w3, w4, counter, tmp, bLeft, bRight );
|
|
while (counter > 0)
|
|
RULE_A_INV(skey, w1, w2, w3, w4, counter, tmp, bLeft, bRight );
|
|
*/
|
|
|
|
while (counter > 30) { //2x
|
|
RULE_B_INV(skey, w1, w2, w3, w4, counter, tmp, bLeft, bRight);
|
|
}
|
|
|
|
skey = ((skipjack_context_t *)context->context)->skey + 16;
|
|
|
|
while (counter > 25) { //5x
|
|
RULE_B_INV(skey, w1, w2, w3, w4, counter, tmp, bLeft, bRight);
|
|
}
|
|
|
|
skey = ((skipjack_context_t *)context->context)->skey + 16;
|
|
//1x
|
|
RULE_B_INV(skey, w1, w2, w3, w4, counter, tmp, bLeft, bRight);
|
|
|
|
while (counter > 20) { //4x
|
|
RULE_A_INV(skey, w1, w2, w3, w4, counter, tmp, bLeft, bRight);
|
|
}
|
|
|
|
skey = ((skipjack_context_t *)context->context)->skey + 16;
|
|
|
|
while (counter > 16) { //4x
|
|
RULE_A_INV(skey, w1, w2, w3, w4, counter, tmp, bLeft, bRight);
|
|
}
|
|
|
|
//1x
|
|
RULE_B_INV(skey, w1, w2, w3, w4, counter, tmp, bLeft, bRight);
|
|
skey = ((skipjack_context_t *)context->context)->skey + 16;
|
|
|
|
while (counter > 10) { //5x
|
|
RULE_B_INV(skey, w1, w2, w3, w4, counter, tmp, bLeft, bRight);
|
|
}
|
|
|
|
skey = ((skipjack_context_t *)context->context)->skey + 16;
|
|
|
|
while (counter > 8) { // 2x
|
|
RULE_B_INV(skey, w1, w2, w3, w4, counter, tmp, bLeft, bRight);
|
|
}
|
|
|
|
while (counter > 5) { // 3x
|
|
RULE_A_INV(skey, w1, w2, w3, w4, counter, tmp, bLeft, bRight);
|
|
}
|
|
|
|
skey = ((skipjack_context_t *)context->context)->skey + 16;
|
|
|
|
while (counter > 0) { // 5x
|
|
RULE_A_INV(skey, w1, w2, w3, w4, counter, tmp, bLeft, bRight);
|
|
}
|
|
|
|
s2cM(w1, plainBlock);
|
|
plainBlock += 2;
|
|
s2cM(w2, plainBlock);
|
|
plainBlock += 2;
|
|
s2cM(w3, plainBlock);
|
|
plainBlock += 2;
|
|
s2cM(w4, plainBlock);
|
|
|
|
return 1;
|
|
}
|
|
|
|
|
|
int skipjack_setup_key(cipher_context_t *context, uint8_t *key, uint8_t keysize)
|
|
{
|
|
int i = 0;
|
|
uint8_t *skey = ((skipjack_context_t *)context->context)->skey;
|
|
|
|
// for keys which are smaller than 160 bits, concatenate until they reach
|
|
// 160 bits in size. Note that key expansion is just concatenation.
|
|
if (keysize < CIPHERS_KEYSIZE) {
|
|
//fill up by concatenating key to as long as needed
|
|
for (i = 0; i < CIPHERS_KEYSIZE; i++) {
|
|
skey[i] = key[(i % keysize)];
|
|
}
|
|
}
|
|
else {
|
|
for (i = 0; i < CIPHERS_KEYSIZE; i++) {
|
|
skey[i] = key[i];
|
|
}
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
|
|
uint8_t skipjack_get_preferred_block_size()
|
|
{
|
|
return BLOCK_SIZE;
|
|
}
|