/* * Copyright (C) 2015 Eistec AB * 2016 Freie UniversitÀt Berlin * * This file is subject to the terms and conditions of the GNU Lesser General * Public License v2.1. See the file LICENSE in the top level directory for more * details. */ /** * @ingroup boards_mulle * @{ * * @file * @name Peripheral MCU configuration for the Eistec Mulle * * @author Joakim NohlgÄrd * @author Hauke Petersen */ #ifndef PERIPH_CONF_H #define PERIPH_CONF_H #include "periph_cpu.h" #ifdef __cplusplus extern "C" { #endif /** * @name Clock system configuration * @{ */ /* The crystal on the Mulle is designed for 12.5 pF load capacitance. According * to the data sheet, the K60 will have a 5 pF parasitic capacitance on the * XTAL32/EXTAL32 connection. The board traces might give some minor parasitic * capacitance as well. */ /* Use the equation * CL = (C1 * C2) / (C1 + C2) + Cstray * with C1 == C2: * C1 = 2 * (CL - Cstray) */ /* enable 14pF load capacitor which will yield a crystal load capacitance of 12 pF */ #define RTC_LOAD_CAP_BITS (RTC_CR_SC8P_MASK | RTC_CR_SC4P_MASK | RTC_CR_SC2P_MASK) static const clock_config_t clock_config = { /* * This configuration results in the system running from the FLL output with * the following clock frequencies: * Core: 48 MHz * Bus: 48 MHz * Flex: 24 MHz * Flash: 24 MHz */ /* The board has a 16 MHz crystal, though it is not used in this configuration */ /* This configuration uses the RTC crystal to provide the base clock, it * should have better accuracy than the internal slow clock, and lower power * consumption than using the 16 MHz crystal and the OSC0 module */ .clkdiv1 = SIM_CLKDIV1_OUTDIV1(0) | SIM_CLKDIV1_OUTDIV2(0) | SIM_CLKDIV1_OUTDIV3(1) | SIM_CLKDIV1_OUTDIV4(1), .rtc_clc = RTC_LOAD_CAP_BITS, .osc32ksel = SIM_SOPT1_OSC32KSEL(2), .clock_flags = /* no OSC0_EN, the RTC module provides the clock input signal for the FLL */ KINETIS_CLOCK_RTCOSC_EN | KINETIS_CLOCK_USE_FAST_IRC | 0, .default_mode = KINETIS_MCG_MODE_FEE, .erc_range = KINETIS_MCG_ERC_RANGE_LOW, /* Input clock is 32768 Hz */ /* 16 pF capacitors yield ca 10 pF load capacitance as required by the * onboard xtal, not used when OSC0 is disabled */ .osc_clc = OSC_CR_SC16P_MASK, .oscsel = MCG_C7_OSCSEL(1), /* Use RTC for external clock */ .fcrdiv = MCG_SC_FCRDIV(0), /* Fast IRC divide by 1 => 4 MHz */ .fll_frdiv = MCG_C1_FRDIV(0b000), /* Divide by 1 => FLL input 32768 Hz */ .fll_factor_fei = KINETIS_MCG_FLL_FACTOR_1464, /* FLL freq = 48 MHz */ .fll_factor_fee = KINETIS_MCG_FLL_FACTOR_1464, /* FLL freq = 48 MHz */ /* PLL is unavailable when using a 32768 Hz source clock, so the * configuration below can only be used if the above config is modified to * use the 16 MHz crystal instead of the RTC. */ .pll_prdiv = MCG_C5_PRDIV0(0b00111), /* Divide by 8 */ .pll_vdiv = MCG_C6_VDIV0(0b01100), /* Multiply by 36 => PLL freq = 72 MHz */ }; #define CLOCK_CORECLOCK (48000000ul) #define CLOCK_BUSCLOCK (CLOCK_CORECLOCK / 1) /** @} */ /** * @name Timer configuration * @{ */ #define PIT_NUMOF (2U) #define PIT_CONFIG { \ { \ .prescaler_ch = 0, \ .count_ch = 1, \ }, \ { \ .prescaler_ch = 2, \ .count_ch = 3, \ }, \ } #define LPTMR_NUMOF (1U) #define LPTMR_CONFIG { \ { \ .dev = LPTMR0, \ .irqn = LPTMR0_IRQn, \ .src = 2, \ .base_freq = 32768u, \ } \ } #define TIMER_NUMOF ((PIT_NUMOF) + (LPTMR_NUMOF)) #define PIT_BASECLOCK (CLOCK_BUSCLOCK) #define PIT_ISR_0 isr_pit1 #define PIT_ISR_1 isr_pit3 #define LPTMR_ISR_0 isr_lptmr0 /** @} */ /** * @name UART configuration * @{ */ static const uart_conf_t uart_config[] = { { .dev = UART0, .freq = CLOCK_CORECLOCK, .pin_rx = GPIO_PIN(PORT_A, 15), .pin_tx = GPIO_PIN(PORT_A, 14), .pcr_rx = PORT_PCR_MUX(3), .pcr_tx = PORT_PCR_MUX(3), .irqn = UART0_RX_TX_IRQn, .scgc_addr = &SIM->SCGC4, .scgc_bit = SIM_SCGC4_UART0_SHIFT, .mode = UART_MODE_8N1, .type = KINETIS_UART, }, { .dev = UART1, .freq = CLOCK_CORECLOCK, .pin_rx = GPIO_PIN(PORT_C, 3), .pin_tx = GPIO_PIN(PORT_C, 4), .pcr_rx = PORT_PCR_MUX(3), .pcr_tx = PORT_PCR_MUX(3), .irqn = UART1_RX_TX_IRQn, .scgc_addr = &SIM->SCGC4, .scgc_bit = SIM_SCGC4_UART1_SHIFT, .mode = UART_MODE_8N1, .type = KINETIS_UART, }, }; #define UART_0_ISR (isr_uart0_rx_tx) #define UART_1_ISR (isr_uart1_rx_tx) #define UART_NUMOF ARRAY_SIZE(uart_config) /** @} */ /** * @name ADC configuration * @{ */ static const adc_conf_t adc_config[] = { /* internal: temperature sensor */ /* The temperature sensor has a very high output impedance, it must not be * sampled using hardware averaging, or the sampled values will be garbage */ [ 0] = { .dev = ADC1, .pin = GPIO_UNDEF, .chan = 26, .avg = ADC_AVG_NONE }, /* internal: band gap */ [ 1] = { .dev = ADC1, .pin = GPIO_UNDEF, .chan = 27, .avg = ADC_AVG_MAX }, /* internal: V_REFSH */ [ 2] = { .dev = ADC1, .pin = GPIO_UNDEF, .chan = 29, .avg = ADC_AVG_MAX }, /* internal: V_REFSL */ [ 3] = { .dev = ADC1, .pin = GPIO_UNDEF, .chan = 30, .avg = ADC_AVG_MAX }, /* internal: DAC0 module output level */ [ 4] = { .dev = ADC1, .pin = GPIO_UNDEF, .chan = 23, .avg = ADC_AVG_MAX }, /* internal: VREF module output level */ [ 5] = { .dev = ADC1, .pin = GPIO_UNDEF, .chan = 18, .avg = ADC_AVG_MAX }, /* on board connection to Mulle Vbat/2 on PGA1_DP pin */ [ 6] = { .dev = ADC1, .pin = GPIO_UNDEF, .chan = 0, .avg = ADC_AVG_MAX }, /* on board connection to Mulle Vchr/2 on PGA1_DM pin */ [ 7] = { .dev = ADC1, .pin = GPIO_UNDEF, .chan = 19, .avg = ADC_AVG_MAX }, /* expansion port PGA0_DP pin */ [ 8] = { .dev = ADC0, .pin = GPIO_UNDEF, .chan = 0, .avg = ADC_AVG_MAX }, /* expansion port PGA0_DM pin */ [ 9] = { .dev = ADC0, .pin = GPIO_UNDEF, .chan = 19, .avg = ADC_AVG_MAX }, /* expansion port PTA17 */ [10] = { .dev = ADC1, .pin = GPIO_PIN(PORT_A, 17), .chan = 17, .avg = ADC_AVG_MAX }, /* expansion port PTB0 */ [11] = { .dev = ADC1, .pin = GPIO_PIN(PORT_B, 0), .chan = 8, .avg = ADC_AVG_MAX }, /* expansion port PTC0 */ [12] = { .dev = ADC0, .pin = GPIO_PIN(PORT_C, 0), .chan = 14, .avg = ADC_AVG_MAX }, /* expansion port PTC8 */ [13] = { .dev = ADC1, .pin = GPIO_PIN(PORT_C, 8), .chan = 4, .avg = ADC_AVG_MAX }, /* expansion port PTC9 */ [14] = { .dev = ADC1, .pin = GPIO_PIN(PORT_C, 9), .chan = 5, .avg = ADC_AVG_MAX }, /* expansion port PTC10 */ [15] = { .dev = ADC1, .pin = GPIO_PIN(PORT_C, 10), .chan = 6, .avg = ADC_AVG_MAX }, /* expansion port PTC11 */ [16] = { .dev = ADC1, .pin = GPIO_PIN(PORT_C, 11), .chan = 7, .avg = ADC_AVG_MAX }, }; #define ADC_NUMOF ARRAY_SIZE(adc_config) /* * K60D ADC reference settings: * 0: VREFH/VREFL external pin pair * 1: VREF_OUT internal 1.2 V reference (VREF module must be enabled) * 2-3: reserved */ #define ADC_REF_SETTING 0 /** @} */ /** * @name DAC configuration * @{ */ static const dac_conf_t dac_config[] = { { .dev = DAC0, .scgc_addr = &SIM->SCGC2, .scgc_bit = SIM_SCGC2_DAC0_SHIFT } }; #define DAC_NUMOF ARRAY_SIZE(dac_config) /** @} */ /** * @name PWM configuration * @{ */ static const pwm_conf_t pwm_config[] = { { .ftm = FTM0, .chan = { { .pin = GPIO_PIN(PORT_C, 1), .af = 4, .ftm_chan = 0 }, { .pin = GPIO_PIN(PORT_C, 2), .af = 4, .ftm_chan = 1 }, { .pin = GPIO_UNDEF, .af = 0, .ftm_chan = 0 }, { .pin = GPIO_UNDEF, .af = 0, .ftm_chan = 0 } }, .chan_numof = 2, .ftm_num = 0 }, { .ftm = FTM1, .chan = { { .pin = GPIO_PIN(PORT_A, 12), .af = 3, .ftm_chan = 0 }, { .pin = GPIO_PIN(PORT_A, 13), .af = 3, .ftm_chan = 1 }, { .pin = GPIO_UNDEF, .af = 0, .ftm_chan = 0 }, { .pin = GPIO_UNDEF, .af = 0, .ftm_chan = 0 } }, .chan_numof = 2, .ftm_num = 1 } }; #define PWM_NUMOF ARRAY_SIZE(pwm_config) /** @} */ /** * @name SPI configuration * * Clock configuration values based on the configured 47988736Hz module clock. * * Auto-generated by: * cpu/kinetis/dist/calc_spi_scalers/calc_spi_scalers.c * * @{ */ static const uint32_t spi_clk_config[] = { ( SPI_CTAR_PBR(0) | SPI_CTAR_BR(8) | /* -> 93728Hz */ SPI_CTAR_PCSSCK(0) | SPI_CTAR_CSSCK(8) | SPI_CTAR_PASC(0) | SPI_CTAR_ASC(8) | SPI_CTAR_PDT(0) | SPI_CTAR_DT(8) ), ( SPI_CTAR_PBR(0) | SPI_CTAR_BR(6) | /* -> 374912Hz */ SPI_CTAR_PCSSCK(0) | SPI_CTAR_CSSCK(6) | SPI_CTAR_PASC(0) | SPI_CTAR_ASC(6) | SPI_CTAR_PDT(0) | SPI_CTAR_DT(6) ), ( SPI_CTAR_PBR(1) | SPI_CTAR_BR(4) | /* -> 999765Hz */ SPI_CTAR_PCSSCK(1) | SPI_CTAR_CSSCK(3) | SPI_CTAR_PASC(1) | SPI_CTAR_ASC(3) | SPI_CTAR_PDT(1) | SPI_CTAR_DT(3) ), ( SPI_CTAR_PBR(2) | SPI_CTAR_BR(0) | /* -> 4798873Hz */ SPI_CTAR_PCSSCK(2) | SPI_CTAR_CSSCK(0) | SPI_CTAR_PASC(2) | SPI_CTAR_ASC(0) | SPI_CTAR_PDT(2) | SPI_CTAR_DT(0) ), ( SPI_CTAR_PBR(1) | SPI_CTAR_BR(0) | /* -> 7998122Hz */ SPI_CTAR_PCSSCK(1) | SPI_CTAR_CSSCK(0) | SPI_CTAR_PASC(1) | SPI_CTAR_ASC(0) | SPI_CTAR_PDT(1) | SPI_CTAR_DT(0) ) }; static const spi_conf_t spi_config[] = { { .dev = SPI0, .pin_miso = GPIO_PIN(PORT_D, 3), .pin_mosi = GPIO_PIN(PORT_D, 2), .pin_clk = GPIO_PIN(PORT_D, 1), .pin_cs = { GPIO_PIN(PORT_D, 0), GPIO_PIN(PORT_D, 4), GPIO_PIN(PORT_D, 5), GPIO_PIN(PORT_D, 6), GPIO_UNDEF }, .pcr = GPIO_AF_2, .simmask = SIM_SCGC6_SPI0_MASK }, { .dev = SPI1, .pin_miso = GPIO_PIN(PORT_E, 3), .pin_mosi = GPIO_PIN(PORT_E, 1), .pin_clk = GPIO_PIN(PORT_E, 2), .pin_cs = { GPIO_PIN(PORT_E, 4), GPIO_UNDEF, GPIO_UNDEF, GPIO_UNDEF, GPIO_UNDEF }, .pcr = GPIO_AF_2, .simmask = SIM_SCGC6_SPI1_MASK } }; #define SPI_NUMOF ARRAY_SIZE(spi_config) /** @} */ /** * @name I2C configuration * @{ */ static const i2c_conf_t i2c_config[] = { { .i2c = I2C0, .scl_pin = GPIO_PIN(PORT_B, 2), .sda_pin = GPIO_PIN(PORT_B, 1), .freq = CLOCK_BUSCLOCK, .speed = I2C_SPEED_FAST, .irqn = I2C0_IRQn, .scl_pcr = (PORT_PCR_MUX(2) | PORT_PCR_ODE_MASK), .sda_pcr = (PORT_PCR_MUX(2) | PORT_PCR_ODE_MASK), }, }; #define I2C_NUMOF ARRAY_SIZE(i2c_config) #define I2C_0_ISR (isr_i2c0) #define I2C_1_ISR (isr_i2c1) /** @} */ #ifdef __cplusplus } #endif #endif /* PERIPH_CONF_H */ /** @} */