/* * Copyright (C) 2018 Gunar Schorcht * * This file is subject to the terms and conditions of the GNU Lesser * General Public License v2.1. See the file LICENSE in the top level * directory for more details. */ /** * @ingroup cpu_esp32 * @{ * * @file * @brief Implementation of required system calls * * @author Gunar Schorcht * * @} */ #include #include #include #include #include "div.h" #include "esp/common_macros.h" #include "irq_arch.h" #include "periph_cpu.h" #include "periph/pm.h" #include "syscalls.h" #include "timex.h" #include "macros/units.h" #include "rom/ets_sys.h" #include "rom/libc_stubs.h" #include "soc/rtc.h" #include "soc/rtc_cntl_struct.h" #include "soc/timer_group_reg.h" #include "soc/timer_group_struct.h" #include "sdk_conf.h" #include "xtensa/xtensa_api.h" #ifdef MODULE_ESP_IDF_HEAP #include "esp_heap_caps.h" #endif #define ENABLE_DEBUG 0 #include "debug.h" #ifdef MODULE_ESP_IDF_HEAP /* if module esp_idf_heap is used, this function has to be defined for ESP32 */ unsigned int get_free_heap_size(void) { return heap_caps_get_free_size(MALLOC_CAP_DEFAULT); } /* alias for compatibility with espressif/wifi_libs */ uint32_t esp_get_free_heap_size( void ) __attribute__((alias("get_free_heap_size"))); /* this function is platform specific if module esp_idf_heap is used */ void heap_stats(void) { size_t _free = 0; size_t _alloc = 0; multi_heap_info_t hinfo; heap_caps_get_info(&hinfo, MALLOC_CAP_DEFAULT); _free = hinfo.total_free_bytes; _alloc = hinfo.total_allocated_bytes; ets_printf("heap: %u (used %u, free %u) [bytes]\n", _alloc + _free, _alloc, _free); } #endif /* MODULE_ESP_IDF_HEAP */ /** * @name Other system functions */ void _abort(void) { ets_printf("#! abort called: powering off\n"); pm_off(); while (1) { }; } void _exit_r(struct _reent *r, int status) { _exit(status); } #if !IS_USED(MODULE_VFS) int _fcntl_r(struct _reent *r, int fd, int cmd, int arg) __attribute__((weak,alias("_no_sys_func"))); #endif #ifndef CLOCK_REALTIME #define CLOCK_REALTIME (clockid_t)1 #endif #ifndef CLOCK_MONOTONIC #define CLOCK_MONOTONIC (clockid_t)4 #endif int clock_gettime_r(struct _reent *r, clockid_t clock_id, struct timespec *tp) { if (tp == NULL) { r->_errno = EINVAL; return -1; } struct timeval tv; uint64_t now = 0; switch (clock_id) { case CLOCK_REALTIME: if (_gettimeofday_r(r, &tv, NULL)) { return -1; } tp->tv_sec = tv.tv_sec; tp->tv_nsec = tv.tv_usec * NS_PER_US; break; case CLOCK_MONOTONIC: now = system_get_time_64(); tp->tv_sec = div_u64_by_1000000(now); tp->tv_nsec = (now - (tp->tv_sec * US_PER_SEC)) * NS_PER_US; break; default: r->_errno = EINVAL; return -1; } return 0; } int clock_gettime(clockid_t clock_id, struct timespec *tp) { return clock_gettime_r(_GLOBAL_REENT, clock_id, tp); } static int _no_sys_func(struct _reent *r) { DEBUG("%s: system function does not exist\n", __func__); r->_errno = ENOSYS; return -1; } extern int _printf_float(struct _reent *rptr, void *pdata, FILE * fp, int (*pfunc) (struct _reent *, FILE *, _CONST char *, size_t len), va_list * ap); extern int _scanf_float(struct _reent *rptr, void *pdata, FILE *fp, va_list *ap); static struct syscall_stub_table s_stub_table = { .__getreent = &__getreent, ._malloc_r = &_malloc_r, ._free_r = &_free_r, ._realloc_r = &_realloc_r, ._calloc_r = &_calloc_r, ._sbrk_r = &_sbrk_r, ._system_r = (void *)&_no_sys_func, ._raise_r = (void *)&_no_sys_func, ._abort = &_abort, ._exit_r = &_exit_r, ._getpid_r = &_getpid_r, ._kill_r = &_kill_r, ._times_r = &_times_r, ._gettimeofday_r = _gettimeofday_r, ._open_r = &_open_r, ._close_r = &_close_r, ._lseek_r = (int (*)(struct _reent *r, int, int, int))&_lseek_r, ._fstat_r = &_fstat_r, ._stat_r = &_stat_r, ._write_r = (int (*)(struct _reent *r, int, const void *, int))&_write_r, ._read_r = (int (*)(struct _reent *r, int, void *, int))&_read_r, ._unlink_r = &_unlink_r, ._link_r = (void *)&_no_sys_func, ._rename_r = (void *)&_no_sys_func, ._lock_init = &_lock_init, ._lock_init_recursive = &_lock_init_recursive, ._lock_close = &_lock_close, ._lock_close_recursive = &_lock_close_recursive, ._lock_acquire = &_lock_acquire, ._lock_acquire_recursive = &_lock_acquire_recursive, ._lock_try_acquire = &_lock_try_acquire, ._lock_try_acquire_recursive = &_lock_try_acquire_recursive, ._lock_release = &_lock_release, ._lock_release_recursive = &_lock_release_recursive, #if CONFIG_NEWLIB_NANO_FORMAT ._printf_float = &_printf_float, ._scanf_float = &_scanf_float, #else /* CONFIG_NEWLIB_NANO_FORMAT */ ._printf_float = NULL, ._scanf_float = NULL, #endif /* CONFIG_NEWLIB_NANO_FORMAT */ }; void IRAM syscalls_init_arch(void) { /* enable the system timer in us (TMG0 is enabled by default) */ TIMER_SYSTEM.config.divider = rtc_clk_apb_freq_get() / MHZ(1); TIMER_SYSTEM.config.autoreload = 0; TIMER_SYSTEM.config.enable = 1; syscall_table_ptr_pro = &s_stub_table; syscall_table_ptr_app = &s_stub_table; } uint32_t system_get_time(void) { /* latch 64 bit timer value before read */ TIMER_SYSTEM.update = 0; /* read the current timer value */ return TIMER_SYSTEM.cnt_low; } uint32_t system_get_time_ms(void) { return system_get_time_64() / US_PER_MS; } int64_t system_get_time_64(void) { uint64_t ret; /* latch 64 bit timer value before read */ TIMER_SYSTEM.update = 0; /* read the current timer value */ ret = TIMER_SYSTEM.cnt_low; ret += ((uint64_t)TIMER_SYSTEM.cnt_high) << 32; return ret; } /* alias for compatibility with espressif/wifi_libs */ int64_t esp_timer_get_time(void) __attribute__((alias("system_get_time_64"))); static IRAM void system_wdt_int_handler(void *arg) { TIMERG0.int_clr_timers.wdt=1; /* clear interrupt */ system_wdt_feed(); } void IRAM system_wdt_feed(void) { DEBUG("%s\n", __func__); TIMERG0.wdt_wprotect=TIMG_WDT_WKEY_VALUE; /* disable write protection */ TIMERG0.wdt_feed=1; /* reset MWDT */ TIMERG0.wdt_wprotect=0; /* enable write protection */ } void system_wdt_init(void) { /* disable boot watchdogs */ TIMERG0.wdt_config0.flashboot_mod_en = 0; RTCCNTL.wdt_config0.flashboot_mod_en = 0; /* enable system watchdog */ TIMERG0.wdt_wprotect=TIMG_WDT_WKEY_VALUE; /* disable write protection */ TIMERG0.wdt_config0.stg0 = TIMG_WDT_STG_SEL_INT; /* stage0 timeout: interrupt */ TIMERG0.wdt_config0.stg1 = TIMG_WDT_STG_SEL_RESET_SYSTEM; /* stage1 timeout: sys reset */ TIMERG0.wdt_config0.sys_reset_length = 7; /* sys reset signal length: 3.2 us */ TIMERG0.wdt_config0.cpu_reset_length = 7; /* sys reset signal length: 3.2 us */ TIMERG0.wdt_config0.edge_int_en = 0; TIMERG0.wdt_config0.level_int_en = 1; /* MWDT clock = 80 * 12,5 ns = 1 us */ TIMERG0.wdt_config1.clk_prescale = 80; /* define stage timeouts */ TIMERG0.wdt_config2 = 2 * US_PER_SEC; /* stage 0: 2 s (interrupt) */ TIMERG0.wdt_config3 = 4 * US_PER_SEC; /* stage 1: 4 s (sys reset) */ TIMERG0.wdt_config0.en = 1; /* enable MWDT */ TIMERG0.wdt_feed = 1; /* reset MWDT */ TIMERG0.wdt_wprotect = 0; /* enable write protection */ DEBUG("%s TIMERG0 wdt_config0=%08x wdt_config1=%08x wdt_config2=%08x\n", __func__, TIMERG0.wdt_config0.val, TIMERG0.wdt_config1.val, TIMERG0.wdt_config2); /* route WDT peripheral interrupt source to CPU_INUM_WDT */ intr_matrix_set(PRO_CPU_NUM, ETS_TG0_WDT_LEVEL_INTR_SOURCE, CPU_INUM_WDT); /* set the interrupt handler and activate the interrupt */ xt_set_interrupt_handler(CPU_INUM_WDT, system_wdt_int_handler, NULL); xt_ints_on(BIT(CPU_INUM_WDT)); } void system_wdt_stop(void) { xt_ints_off(BIT(CPU_INUM_WDT)); TIMERG0.wdt_wprotect=TIMG_WDT_WKEY_VALUE; /* disable write protection */ TIMERG0.wdt_config0.en = 0; /* disable MWDT */ TIMERG0.wdt_feed = 1; /* reset MWDT */ TIMERG0.wdt_wprotect = 0; /* enable write protection */ } void system_wdt_start(void) { TIMERG0.wdt_wprotect=TIMG_WDT_WKEY_VALUE; /* disable write protection */ TIMERG0.wdt_config0.en = 1; /* disable MWDT */ TIMERG0.wdt_feed = 1; /* reset MWDT */ TIMERG0.wdt_wprotect = 0; /* enable write protection */ xt_ints_on(BIT(CPU_INUM_WDT)); }